Section-A

1. 2,4-DNP test can be used to identify

a. aldehyde

c. ether

b. halogens

d. amine

Ans: (a) Solution:

 $2. \ \ Identify \ A \ in \ the \ following \ chemical \ reaction.$

CHO

i) HCHO, NaOH

ii) CH₃CH₂Br,NaH, DMF

iii) HI,
$$\Delta$$

Ans: (c)
Solution:

- 3. The nature of charge on resulting colloidal particles when FeCl₃ is added to excess of hot water is:
 - a. positive

- b. neutral
- c. sometimes positive and sometimes negative
- d. negative

Ans: (a)

Solution:

If $FeCl_3$ is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions.

4. Match List-I with List-II

List-I

List-II

i. Wurtz reaction

ii. Sandmeyer reaction

c.
$$2CH_3CH_2Cl + 2Na \xrightarrow{\text{Ether}} C_2H_5 - C_2H_5 + 2NaCl$$

iii. Fitting reaction

d.
$$2C_2H_5Cl + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2NaCl$$

iv. Gatterman reaction

Choose the correct answer from the option given below:

- a. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- b. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- c. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
- d. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans: (c) Solution:

(a)
$$N_2^+Cl^ Cu_2Cl_2$$
 + N_2 (Sandmeyer reaction)

(b)
$$N_2^+Cl^-$$
 Cu,HCl + N_2

(c)
$$2CH_3-CH_2CI + 2Na \xrightarrow{\text{Ether}} C_2H_5-C_2H_5+2NaCI$$
 (Wurtz reaction)

(d) Ether
$$C_6H_5CI + 2Na \xrightarrow{\text{Ether}} C_6H_5 - C_6H_5 + 2NaCI$$

- 5. In $CH_2 = \overset{2}{C} = \overset{3}{CH} \overset{4}{CH_3}$ molecule, the hybridization of carbon 1, 2, 3 and 4 respectively are:
 - a. sp^2 , sp, sp^2 , sp^3

c. sp^2 , sp^3 , sp^2 , sp^3

b. sp^2 , sp^2 , sp^2 , sp^3

d. sp^3 , sp, sp^3 , sp^3

Ans: (a)

Solution:

$$CH_{sp^2} = CH_{sp} = CH_{sp^2} - CH_{sp^3}$$

6. Match List-I with List-II.

List-II List-II

- a. Sucrose i. b-D-Galactose and b-D-Glucose
- b. Lactose ii. a-D-Glucose and b-D-Fructose
- c. Maltose iii. a-D- Glucose and a-D-Glucose

Choose the correct answer from the options given below:

- a. (a)-(iii), (b)-(ii), (c)-(i)
- c. (a)-(i), (b)-(iii), (c)-(ii)

- b. (a)-(iii), (b)-(i), (c)-(ii)
- d. (a)-(ii), (b)-(i), (c)-(iii)

Ans: (d) Solution:

Sucrose → a-D- Glucose and b-D- Fructose

Lactose → b-D- Galactose and b-D- Glucose

Maltose → a-D- Glucose and a-D- Glucose

- 7. Which pair of oxides is acidic in nature?
 - a. N₂O, BaO

b. CaO, SiO₂

c. B₂O₃, CaO

d. B₂O₃, SiO₂

Ans: (d) Solution:

B₂O₃ and SiO₂ both are oxides of non-metal and hence are acidic in nature.

- 8. Calgon is used for water treatment. Which of the following statement is NOT true about calgon?
 - a. Calgon contains the 2^{nd} most abundant element by weight in the earth's crust
 - b. It is also known as Graham's salt.
 - c. It is polymeric compound and is water soluble.
 - d. It does not remove Ca²⁺ ion by precipitation.

Ans: (a)

Solution:

Na₆(PO₃)₆ or Na₆P₆O₁₈

Order of abundance of element in earth crust is

0 > Si > Al > Fe > Ca > Na > Mg > K

So, second most abundant element in earth crust is Si not Ca.

- 9. Ceric ammonium nitrate and CHCl₃/alc. KOH are used for the identification of functional groups present in _____and_____ respectively.
 - a. alcohol, amine

b. amine, alcohol

c. alcohol, phenol

d. amine, phenol

Ans: (a)

Solution:

Alcohol give positive test with ceric ammonium nitrate and primary amines gives carbonyl amine test with CHCl₃, KOH

10. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: In TlI_3 , isomorphous to CsI_3 , the metal is present in +1 oxidation state.

Reason R: Tl metals has fourteen *f* electrons in its electronic configuration. In the light of the above statements, choose the most appropriate **Ans** from the options given below:

- a. Both A and R are correct and R is the correct explanation of A
- b. A is not correct but R is correct
- c. Both A and R are correct R is NOT the correct explanation of A
- d. A is correct but R is not correct

Ans: (c)

Solution:

TlI₃ is Tl+ I₃-

CsI₃ is Cs⁺ I₃-

Thallium shows Tl+ state due to inert pair effect.

11. The correct order of electron gain enthalpy is:

a.
$$S > Se > Te > 0$$

b.
$$0 > S > Se > Te$$

c.
$$S > 0 > Se > Te$$

d.
$$Te > Se > S > 0$$

Ans: (a)
Solution:

Electron gain enthalpy of 0 is very low due to small size.

12. Identify A in the given chemical reaction.

$$\begin{array}{c} & CH_{2}CH_{2}CHO \\ \hline \\ CH_{2}CH_{2}CHO \end{array} \xrightarrow[\stackrel{NaOH}{ } \\ \xrightarrow{C_{2}H_{5}OH,H_{2}O} \\ & \stackrel{\Lambda}{} \end{array} A \text{ (Major product)}$$

d.
$$CH_2CH_2COOH$$
 $CH_2CH_2CH_2OH$

Ans: (a)

Solution:

e. (Internal aldol condensation)

13. Match List-I with List-II

List-I		List-II
a.	Siderite	i. Cu
b.	Calamine	ii. Ca
c.	Malachite	iii. Fe
d.	Cryolite	iv. Al
		V. Zn

Choose the correct answer from the options given below:

- a. (a)-(i), (b)-(ii), (c)-(v), (d)-(iii)
- b. (a)-(iii), (b)-(v), (c)-(i), (d)-(iv)
- c. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- d. (a)-(iii), (b)-(i), (c)-(v), (d)

Ans: (b)

Solution:

Siderite - FeCO₃ Calamine - ZnCO₃

 $Malachite \ \hbox{-} \ CuCO_3.Cu(OH)_2$

Cryolite - Na₃AlF₆

14. Identify A in the given reaction.

OH
$$SOCl_2 \longrightarrow A \text{ (Major product)}$$
HO CH_2OH

a.

c.

b.

d.

Ans: (b) Solution:

15. Match List-I with List-II

List-I		List-II	
a.	Sodium Carbonate	i. Deacon	
b.	Titanium	ii. Caster-Kellner	
c.	Chlorine	iii. Van-Arkel	
d.	Sodium hydroxide	iv. Solvay	

Choose the correct answer from the option given below:

- a. (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- c. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

- b. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- d. (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Ans: (b)

Solution:

Sodium carbonate Na₂CO₃ & NaHCO₃

Titanium: Van arkel method

$$Ti + I_2 \xrightarrow{T_1} Ti I_4$$
 (g)

$$Ti I_4 \xrightarrow{T_2T_2 > T_1} Ti_{\substack{Refined \\ titanium}} + 2I_2$$

Chlorine: Decon's process

$$HCl + O_2 \xrightarrow{CuCl_2} H_2O + Cl_2$$

Sodium hydroxide :- Caster-Kellner cell

16. Match List-I with List-II.

List-I	List-II
(Molecule)	(Bond order)
a. Ne ₂	i. 1
b. N ₂	ii. 2
c. F ₂	iii. 0
d. O ₂	iv. 3

Choose the correct answer from the options given below:

- a. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
- b. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- c. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
- d. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

Ans: (a)

Solution:

$$\begin{array}{ccc} Ne_2 & BO = 0 \\ N_2 & BO = 3 \\ F_2 & BO = 1 \\ O_2 & BO = 2 \end{array}$$

As per molecular orbital theory

17. Which of the following forms of hydrogen emits low energy b- particles?

a. Proton H+

b. Deuterium ²₁H

c. Protium ¹H

d. Tritium ³H

Ans: (d)

Solution:

Tritium isotope of hydrogen is radioactive and emits low energy b^- particles. It is because of high n/p ratio of tritium which makes nucleus unstable

18. A. Phenyl methanamine

- B. N, N-Dimethylaniline
- C. N-Methyl aniline
- D. Benzenamine

Choose the correct order of basic nature of the above amines.

a. D > C > B > A

c. A > C > B > D

b. D > B > C > A

d. A > B > C > D

Ans: (d) Solution:

19.

Considering the above reaction, the major product among the following is:

Ans:(c)

Solution:

$$Zn-Hg/HCI$$
 Cr_2O_3
 CH_2-CH_3
 O
(Aromatisation)

20. Seliwanoff test and Xanthoproteic test are used for the identification of _____ and ____ respectively

a. ketoses, proteins

c. aldoses, ketoses

b. proteins, ketoses

d. ketoses, aldoses

Ans:(a)

Solution:

Seliwanoff test and Xanthoproteic test are used for identification of 'Ketoses' and proteins respectively.

Section B

1. The NaNO₃ weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na⁺ per mL is _____g. (Rounded off to the nearest integer) [Given: Atomic weight in g mol⁻¹. Na: 23; N: 14; O: 16.

Ans: (13)

Solution:

 $Na^+ = 70 \text{ mg/mL}$

 $W_{Na^{*}}$ in 50 mL solution = 70×50 mg = 3500 mg = 3.5 g

Moles of Na⁺ in 50 ml solution = $\frac{3.5}{23}$

Moles of NaNO₃ = moles of Na⁺ = $\frac{3.5}{23}$ mol

Mass of NaNO₃ = $\frac{3.5}{23} \times 85 = 12.934 \approx 13$ g Ans.

Ans:3

Solution:

 $[Co(Ox)_2Br(NH_3)]^{2-}$

Optically active

Optically inactive

Mirror image

Total stereoisomer = 2(OI) + 1POE (pair of enantiomers) = 3

3. The average S–F bond energy in kJ mol^{-1} of SF₆ is ______. (Rounded off to the nearest integer)

[Given : The values of standard enthalpy of formation of $SF_6(g)$, S(g) and F(g) are -1100, 275 and 80 kJ mol⁻¹ respectively.]

Ans: (309) Solution:

$$SF_6(g) \longrightarrow S(g) + 6F(g)$$

$$\Delta H_{reaction}^o = 6 \times E_{S-F} = \Delta H_f^o[S(g)] + 6 \times \Delta H_f^o[F(g)] - \Delta H_f^o[SF_6(g)]$$

$$6 \times E_{S-F} = 275 + 6 \times 80 - (-1100) = 275 + 480 + 1100$$

$$6 \times E_{S-F} = 1855$$

$$E_{S-F} = \frac{1855}{6} = 309.1667 = 309 \text{ kJ/mol}$$

The value of x is _____. (Rounded off to the nearest integer)

[Given:
$$E_{Zn^{2+}/Zn}^0 = -0.76V$$
; $E_{Ag^+/Ag}^0 = +0.80V$; $\frac{2.303RT}{F} = 0.059$]

Ans: (147)

Solution:

$$Zn(s)|Zn^{+2}(0.1M)||Ag^{+}(0.01M)|Ag(s)$$

$$Zn(s) + 2Ag^+ \rightleftarrows 2Ag(s) + Zn^{+2}$$

$$E^0 = 0.80 + 0.76 = 1.56; Q = \left\{ \frac{Zn^{2+}}{(Aq^+)^2} \right\}$$

$$E = E^0 - \frac{0.059}{n} \log(Q)$$

$$E = 1.56 - \frac{0.059}{2} log \left[\frac{0.1}{(0.01)^2} \right]$$

$$E = 1.56 - \frac{0.059}{2} log[(10)^3]$$

$$E = 1.4715 = 147.15 \times 10^{-2} volt = x \times 10^{-2}$$

$$X = 147.15 \simeq 147$$

5. A ball weighing 10g is moving with a velocity of 90ms⁻¹. If the uncertainty in its velocity is 5%, then the uncertainty in its position is _____× 10^{-33} m. (Rounded off to the nearest integer) [Given: h = 6.63×10^{-34} J s]

Ans: 1

Solution:

m = 10 g = 10⁻² kg
v = 90 m/s

$$\Delta v = v \times 5\% = 90 \times \frac{5}{100} = 4.5 \frac{m}{s}$$

m. Δv . $\Delta x \ge \frac{h}{4\pi}$
 $10^{-2} \times 4.5 \times \Delta x \ge \frac{6.63 \times 3 \times 10^{-34}}{4 \times \frac{22}{7}}$
 $\Delta x \ge \frac{6.63 \times 7 \times 2 \times 10^{-34}}{9 \times 4 \times 22 \times 10^{-2}}$
 $\Delta x \ge 1.17 \times 10^{-33} = x \times 10^{-33}$
 $x = 1.17 \simeq 1$

6. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A". The oxidation state of sulphur in "A" is _____.

Ans: (+6)

Solution:

$$S_2O_3^{2-} + MnO_4^{-} \xrightarrow{AlkalineMedium} A$$

$$A \to SO_4^{2-}$$

Oxidation no. of 'S' = +6

7. When 12.2 g of benzoic acid is dissolved in 100g of water, the freezing point of solution was found to be -0.93° C (K_f (H_2O) = 1.86 K kg mol⁻¹). Then number (n) of benzoic acid molecules associated (assuming 100% association) is______.

Ans: (2)

Solution:

$$n \text{ PhCOOH} \rightarrow (\text{PhCOOH})_n$$

$$N = \frac{1}{x} = i\{As, \alpha = 1\}$$

$$\Delta T_f = i \times k_f \times m$$

$$0.93 = \frac{1}{n} \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100}$$
; n = 2

8. If the activation energy of a reaction is 80.9 kJ mol^{-1} , the fraction of molecules at 700 K, having enough energy to react to form products is e^{-x} . The value of x is _____. (Rounded off to the nearest integer)

[Use
$$R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$$
]

Ans: (14)

Solution:

$$E_a = 80.9 \frac{kJ}{mol}$$

Fraction of molecules able to cross energy barrier = $e^{-\frac{E_a}{RT}}$ = e^{-x}

$$x = \frac{E_a}{RT} = \frac{80.9 \times 1000}{8.31 \times 700} = 13.91$$

$$x \simeq 14$$

9. The pH of ammonium phosphate solution, if pk_a of phosphoric acid and pk_b of ammonium hydroxide are 5.23 and 4.75 respectively, is______.

Ans: 7

Solution:

$$(NH_4)_3 PO_4 \approx 3NH_4^+ + PO_4^{3-}$$

$$[H^+] = K_a \times \sqrt{\frac{kw}{k_a \times k_b}}$$

$$pH = pk_a + \frac{1}{2} \{pk_w - pk_a - pk_b\}$$

$$pH = 5.23 + \frac{1}{2} \{14 - 5.23 - 4.75\}$$

pH =
$$5.23 + \frac{1}{2} (4.02) = 7.24 = 7 (Nearest integer)$$

10. The number of octahedral voids per lattice site in a lattice is _____.

(Rounded off to the nearest integer)

Ans: 1

Solution:

Assuming FCC

No of lattice sites = 6 face centre + 8 corner = 14

No. of octahedral voids = 13

Ratio =
$$\frac{13}{14}$$
 = 0.92857 = 1 (nearest integer)