JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Section-A

1. 2,4-DNP test can be used to identify
a. aldehyde
b. halogens
c. ether
d. amine

Ans: (a)
Solution:

2. Identify A in the following chemical reaction.

a.

b.

c.

d.

Ans: (c)
Solution:

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

3. The nature of charge on resulting colloidal particles when FeCl_{3} is added to excess of hot water is:
a. positive
b. neutral
c. sometimes positive and sometimes
d. negative negative
Ans: (a)

Solution:

If FeCl_{3} is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe^{3+} ions.
4. Match List-I with List-II

List-I

a.

b.

c. $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{NaCl}$
d. $2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{NaCl}$

List-II

i. Wurtz reaction
ii. Sandmeyer reaction
iii. Fitting reaction
iv. Gatterman reaction

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Choose the correct answer from the option given below:
a. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
b. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
c. (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
d. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

Ans: (c)
Solution:
(a)

(b)

(c)

(d)
$2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow[\text { (Fitting reaction) }]{\text { Ether }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{NaCl}$
5. In $\stackrel{1}{\mathrm{CH}_{2}}=\stackrel{2}{\mathrm{C}}=\stackrel{3}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{3}$ molecule, the hybridization of carbon $1,2,3$ and 4 respectively are:
a. $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
b. $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
c. $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
d. $\mathrm{sp}^{3}, \mathrm{sp}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$

Ans: (a)
Solution:
$\underset{\mathrm{sp}^{2}}{\mathrm{CH}_{2}}=\underset{\mathrm{sp}}{\mathrm{C}}=\underset{\mathrm{sp}^{2}}{\mathrm{CH}}-\underset{\mathrm{sp}^{3}}{\mathrm{CH}_{3}}$
6. Match List-I with List-II.

List-I

a. Sucrose
b. Lactose
c. Maltose

List-II

i. b-D-Galactose and b-D-Glucose
ii. a-D-Glucose and b-D-Fructose
iii. a-D- Glucose and a-D-Glucose

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Choose the correct answer from the options given below:
a. (a)-(iii), (b)-(ii), (c)-(i)
b. (a)-(iii), (b)-(i), (c)-(ii)
c. (a)-(i), (b)-(iii), (c)-(ii)
d. (a)-(ii), (b)-(i), (c)-(iii)

Ans: (d)
Solution:
Sucrose \rightarrow a-D- Glucose and b-D- Fructose
Lactose $\rightarrow \mathrm{b}$-D- Galactose and b-D- Glucose
Maltose \rightarrow a-D- Glucose and a-D- Glucose
7. Which pair of oxides is acidic in nature?
a. $\mathrm{N}_{2} \mathrm{O}, \mathrm{BaO}$
b. $\mathrm{CaO}, \mathrm{SiO}_{2}$
c. $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{CaO}$
d. $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$

Ans: (d)
Solution:
$\mathrm{B}_{2} \mathrm{O}_{3}$ and SiO_{2} both are oxides of non-metal and hence are acidic in nature.
8. Calgon is used for water treatment. Which of the following statement is NOT true about calgon?
a. Calgon contains the $2^{\text {nd }}$ most abundant element by weight in the earth's crust
b. It is also known as Graham's salt.
c. It is polymeric compound and is water soluble.
d. It does not remove Ca^{2+} ion by precipitation.

Ans: (a)
Solution:
$\mathrm{Na}_{6}\left(\mathrm{PO}_{3}\right) 6$ or $\mathrm{Na}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$
Order of abundance of element in earth crust is
$\mathrm{O}>\mathrm{Si}>\mathrm{Al}>\mathrm{Fe}>\mathrm{Ca}>\mathrm{Na}>\mathrm{Mg}>\mathrm{K}$
So, second most abundant element in earth crust is Si not Ca.
9. Ceric ammonium nitrate and $\mathrm{CHCl}_{3} /$ alc. KOH are used for the identification of functional groups present in \qquad and \qquad respectively.
a. alcohol, amine
b. amine, alcohol
c. alcohol, phenol
d. amine, phenol

Ans: (a)

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Solution:
Alcohol give positive test with ceric ammonium nitrate and primary amines gives carbonyl amine test with $\mathrm{CHCl}_{3}, \mathrm{KOH}$
10. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: In Tll 3 , isomorphous to CsI_{3}, the metal is present in +1 oxidation state.
Reason R : Tl metals has fourteen f electrons in its electronic configuration. In the light of the above statements, choose the most appropriate Ans from the options given below:
a. Both A and R are correct and R is the correct explanation of A
b. A is not correct but R is correct
c. Both A and R are correct R is NOT the correct explanation of A
d. A is correct but R is not correct

Ans: (c)
Solution:
TlI_{3} is $\mathrm{Tl}^{+} \mathrm{I}_{3}{ }^{-}$
CsI_{3} is $\mathrm{Cs}^{+} \mathrm{I}_{3}{ }^{-}$
Thallium shows Tl^{+}state due to inert pair effect.
11. The correct order of electron gain enthalpy is:
a. $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>0$
b. $\quad \mathrm{O}>\mathrm{S}>\mathrm{Se}>\mathrm{Te}$
c. $\mathrm{S}>\mathrm{O}>\mathrm{Se}>\mathrm{Te}$
d. $\mathrm{Te}>\mathrm{Se}>\mathrm{S}>0$

Ans: (a)
Solution:
Electron gain enthalpy of 0 is very low due to small size.
12. Identify A in the given chemical reaction.

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

a.

b.

C.

d.

Ans: (a)

Solution:

e. (Internal aldol condensation)
13. Match List-I with List-II

List-I

a. Siderite
b. Calamine
c. Malachite
d. Cryolite

List-II
i. Cu
ii. Ca
iii. Fe
iv. Al
V. Zn

Choose the correct answer from the options given below:
a. (a)-(i), (b)-(ii), (c)-(v), (d)-(iii)
b. (a)-(iii), (b)-(v), (c)-(i), (d)-(iv)
c. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
d. (a)-(iii), (b)-(i), (c)-(v), (d)

Ans: (b)
Solution:
Siderite - FeCO_{3}
Calamine - ZnCO_{3}
Malachite - $\mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$
Cryolite - Na3AlF6

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

14. Identify A in the given reaction.

a.

b.

c.

d.

Ans: (b)
Solution:

15. Match List-I with List-II

List-I
a. Sodium Carbonate
b. Titanium
c. Chlorine
d. Sodium hydroxide

List-II
i. Deacon
ii. Caster-Kellner
iii. Van-Arkel
iv. Solvay

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Choose the correct answer from the option given below:
a. (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
b. (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
c. (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
d. (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)

Ans: (b)
Solution:
Sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3}$ \& NaHCO_{3}
Titanium : Van arkel method

Chlorine : Decon's process

$$
\mathrm{HCl}+\mathrm{O}_{2} \xrightarrow{\mathrm{CuCl}_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}
$$

Sodium hydroxide :- Caster-Kellner cell
16. Match List-I with List-II.

List-I
 (Molecule)

a. Ne_{2}
b. N_{2}
c. F_{2}
d. O_{2}

Choose the correct answer from the options given below:
a. (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
b. (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
c. (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
d. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)

Ans: (a)
Solution:
Ne_{2}

$$
\mathrm{BO}=0
$$

$\mathrm{N}_{2} \quad \mathrm{BO}=3$
$\mathrm{F}_{2} \quad \mathrm{BO}=1$
$\mathrm{O}_{2} \quad \mathrm{BO}=2$
As per molecular orbital theory

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

17. Which of the following forms of hydrogen emits low energy b- particles?
a. Proton H^{+}
b. Deuterium ${ }_{1}^{2} \mathrm{H}$
c. Protium ${ }_{1}^{1} \mathrm{H}$
d. Tritium ${ }_{1}^{3} \mathrm{H}$

Ans: (d)

Solution:

Tritium isotope of hydrogen is radioactive and emits low energy b- particles. It is because of high n / p ratio of tritium which makes nucleus unstable
18. A. Phenyl methanamine
B. N, N-Dimethylaniline
C. N-Methyl aniline
D. Benzenamine

Choose the correct order of basic nature of the above amines.
a. $\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$
b. $\mathrm{D}>\mathrm{B}>\mathrm{C}>\mathrm{A}$
c. $\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}$
d. $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$

Ans: (d)
Solution:

(a)
Delocalised ℓ p.

(d)
(b)
19.
 $\xrightarrow[\substack{\text { (2) } \mathrm{Cr}_{2} \mathrm{O}_{3}, 773 \mathrm{~K} \\ 10-20 \text { atm }}]{\text { (1) } \mathrm{Zn}, \mathrm{HCl}}$

Considering the above reaction, the major product among the following is:

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

a.

b.

C.

d.

Ans:(c)
Solution:

\qquad $\xrightarrow{\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}}$

(Aromatisation)
20. Seliwanoff test and Xanthoproteic test are used for the identification of \qquad and
\qquad respectively
a. ketoses, proteins
b. proteins, ketoses
c. aldoses, ketoses
d. ketoses, aldoses

Ans:(a)
Solution:
Seliwanoff test and Xanthoproteic test are used for identification of 'Ketoses' and proteins respectively.

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

Section B

1. The NaNO_{3} weighed out to make 50 mL of an aqueous solution containing $70.0 \mathrm{mg} \mathrm{Na}+$ per $m L$ is \qquad g. (Rounded off to the nearest integer)
[Given: Atomic weight in g mol${ }^{-1}$. Na: 23; N: 14; 0: 16.
Ans: (13)
Solution:
$\mathrm{Na}^{+}=70 \mathrm{mg} / \mathrm{mL}$
$\mathrm{W}_{\mathrm{Na}^{+}}$in 50 mL solution $=70 \times 50 \mathrm{mg}=3500 \mathrm{mg}=3.5 \mathrm{~g}$
Moles of Na^{+}in 50 ml solution $=\frac{3.5}{23}$
Moles of $\mathrm{NaNO}_{3}=$ moles of $\mathrm{Na}^{+}=\frac{3.5}{23} \mathrm{~mol}$
Mass of $\mathrm{NaNO}_{3}=\frac{3.5}{23} \times 85=12.934 \simeq 13 \mathrm{~g}$ Ans.
2. The number of stereoisomers possible for $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{Br})\left(\mathrm{NH}_{3}\right)\right]^{2-}$ is \qquad

$$
\text { [ox = oxalate }]
$$

Ans:3

Solution:
$\left[\mathrm{Co}(\mathrm{Ox})_{2} \mathrm{Br}\left(\mathrm{NH}_{3}\right)\right]^{2-}$

Optically active

Optically inactive

Mirror image
Total stereoisomer $=2(\mathrm{OI})+1$ POE $($ pair of enantiomers $)=3$

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

3. The average S-F bond energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ of SF_{6} is \qquad . (Rounded off to the nearest integer)
[Given : The values of standard enthalpy of formation of $\mathrm{SF}_{6}(\mathrm{~g}), \mathrm{S}(\mathrm{g})$ and $\mathrm{F}(\mathrm{g})$ are 1100,275 and $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.]

Ans: (309)
Solution:
$\mathrm{SF}_{6}(\mathrm{~g}) \longrightarrow \mathrm{S}(\mathrm{g})+6 \mathrm{~F}(\mathrm{~g})$
$\Delta H_{\text {reaction }}^{\circ}=6 \times \mathrm{E}_{\mathrm{S}-\mathrm{F}}=\Delta \mathrm{H}_{\mathrm{f}}^{0}[\mathrm{~S}(\mathrm{~g})]+6 \times \Delta \mathrm{H}_{\mathrm{f}}^{0}[\mathrm{~F}(\mathrm{~g})]-\Delta \mathrm{H}_{\mathrm{f}}^{0}\left[\mathrm{SF}_{6}(\mathrm{~g})\right]$
$6 \times$ Es-f $=275+6 \times 80-(-1100)=275+480+1100$
$6 \times E_{s-\mathrm{F}}=1855$
$E_{S-F}=\frac{\frac{1855}{6}}{6}=309.1667=309 \mathrm{~kJ} / \mathrm{mol}$
4. E.m.f of the following cell at 298 K in V is $\mathrm{x} \times 10^{-2}$.
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 \mathrm{M})\right|\left|\mathrm{Ag}^{+}(0.01 \mathrm{M})\right| \mathrm{Ag}$
The value of x is \qquad (Rounded off to the nearest integer)
[Given: $E_{Z n^{2+} / Z n}^{0}=-0.76 \mathrm{~V} ; E_{A g^{+} / A g}^{0}=+0.80 \mathrm{~V} ; \frac{2.303 R T}{F}=0.059$]
Ans: (147)
Solution:
$Z n(s)\left|Z n^{+2}(0.1 M)\right|\left|A g^{+}(0.01 M)\right| A g(s)$
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{Ag}^{+} \rightleftarrows 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{+2}$
$E^{0}=0.80+0.76=1.56 ; Q=\left\{\frac{Z n^{2+}}{\left(A g^{+}\right)^{2}}\right\}$
$E=E^{0}-\frac{0.059}{n} \log (Q)$
$E=1.56-\frac{0.059}{2} \log \left[\frac{0.1}{(0.01)^{2}}\right]$
$E=1.56-\frac{0.059}{2} \log \left[(10)^{3}\right]$
$E=1.4715=147.15 \times 10^{-2}$ volt $=\mathrm{x} \times 10^{-2}$

JEE MAIN 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

$X=147.15 \simeq 147$
5. A ball weighing 10 g is moving with a velocity of $90 \mathrm{~ms}^{-1}$. If the uncertainty in its velocity is 5%, then the uncertainty in its position is \qquad $\times 10^{-33} \mathrm{~m}$. (Rounded off to the nearest integer)
[Given: $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$]
Ans: 1
Solution:

$$
\begin{aligned}
& \mathrm{m}=10 \mathrm{~g}=10^{-2} \mathrm{~kg} \\
& \mathrm{v}=90 \mathrm{~m} / \mathrm{s} \\
& \Delta v=v \times 5 \%=90 \times \frac{5}{100}=4.5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \mathrm{~m} . \Delta \mathrm{v} . \Delta \mathrm{x} \geq \frac{h}{4 \pi} \\
& 10^{-2} \times 4.5 \times \Delta x \geq \frac{6.63 \times 3 \times 10^{-34}}{4 \times \frac{22}{7}} \\
& \Delta x \geq \frac{6.63 \times 7 \times 2 \times 10^{-34}}{9 \times 4 \times 22 \times 10^{-2}} \\
& \Delta x \geq 1.17 \times 10^{-33}=x \times 10^{-33} \\
& x=1.17 \simeq 1
\end{aligned}
$$

6. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_{4}^{-}to " A ". The oxidation state of sulphur in " A " is \qquad ـ.

Ans: $(+6)$
Solution:
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{MnO}_{4}^{-} \xrightarrow{\text { AlkalineMedium }} A$
$A \rightarrow \mathrm{SO}_{4}^{2-}$
Oxidation no. of 'S' $=+6$
7. When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be $-0.93^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$. Then number (n) of benzoic acid molecules associated (assuming 100\% association) is \qquad .
Ans: (2)
Solution:
$n \mathrm{PhCOOH} \rightarrow(\mathrm{PhCOOH}) \mathrm{n}$
$N=\frac{1}{x}=i\{A s, \alpha=1\}$
$\Delta T_{f}=i \times k_{f} \times m$

JEE Main 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

$0.93=\frac{1}{n} \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100} ; \mathrm{n}=2$
8. If the activation energy of a reaction is $80.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the fraction of molecules at 700 K , having enough energy to react to form products is $\mathrm{e}^{-\mathrm{x}}$. The value of x is \qquad -.
(Rounded off to the nearest integer)
$\left[\right.$ Use $\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
Ans: (14)
Solution:
$E_{a}=80.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Fraction of molecules able to cross energy barrier $=e^{-\frac{E a}{R T}}=\mathrm{e}^{-\mathrm{x}}$
$\mathrm{x}=\frac{E_{a}}{R T}=\frac{80.9 \times 1000}{8.31 \times 700}=13.91$
$x \simeq 14$
9. The pH of ammonium phosphate solution, if pk_{a} of phosphoric acid and pk_{b} of ammonium hydroxide are 5.23 and 4.75 respectively, is \qquad .

Ans: 7
Solution:
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightleftarrows 3 \mathrm{NH}_{4}^{+}+\mathrm{PO}_{4}^{3-}$
$\left[H^{+}\right]=K_{a} \times \sqrt{\frac{k w}{k_{a} \times k_{b}}}$
$\mathrm{pH}=\mathrm{pk}_{\mathrm{a}}+\frac{1}{2}\left\{p k_{w}-p k_{a}-p k_{b}\right\}$
$\mathrm{pH}=5.23+\frac{1}{2}\{14-5.23-4.75\}$
$\mathrm{pH}=5.23+\frac{1}{2}(4.02)=7.24=7($ Nearest integer $)$

JEE Main 26 ${ }^{\text {th }}$ Feb. shift-2 2021 (Chemistry)

10. The number of octahedral voids per lattice site in a lattice is \qquad .
(Rounded off to the nearest integer)

Ans: 1
Solution:
Assuming FCC
No of lattice sites $=6$ face centre +8 corner $=14$
No. of octahedral voids $=13$
Ratio $=\frac{13}{14}=0.92857=1$ (nearest integer)

