Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

AMTI - NMTC - 2023 Jan. - JUNIOR - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagrams and justification should be given wherever necessary.
4. Before answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.

6 . The maximum time allowed is THREE hours.

1. x, y, z are positive reals and $(x+y+z)^{3}=32 x y z$. Find the numerical limits between which the expression $\frac{x^{4}+y^{4}+z^{4}}{(x+y+z)^{4}}$ lies?

Sol. $\quad \frac{x^{4}+y^{4}+z^{4}}{(x+y+z)^{4}}=\frac{x^{4}}{(x+y+z)^{4}}+\frac{y^{4}}{(x+y+z)^{4}}+\frac{z^{4}}{(x+y+z)^{4}}$

$$
=\left(\frac{x}{x+y+z}\right)^{4}+\left(\frac{y}{x+y+z}\right)^{4}+\left(\frac{z}{x+y+z}\right)^{4}
$$

Now, apply $A M \geq G M$ for numbers $\left(\frac{x}{x+y+z}\right)^{4},\left(\frac{y}{x+y+z}\right)^{4},\left(\frac{z}{x+y+z}\right)^{4}$ we get

$$
\frac{\left(\frac{x}{x+y+z}\right)^{4}+\left(\frac{y}{x+y+z}\right)^{4}+\left(\frac{z}{x+y+z}\right)^{4}}{3} \geq \sqrt[3]{\left(\frac{x y z}{(x+y+z)^{3}}\right)^{4}}
$$

We know that $(x+y+z)^{3}=32 x y z$

$$
\begin{aligned}
& \left(\frac{x}{x+y+z}\right)^{4}+\left(\frac{y}{x+y+z}\right)^{4}+\left(\frac{z}{x+y+z}\right)^{4} \geq 3 \sqrt[3]{\left(\frac{1}{32}\right)^{4}} \\
& \left(\frac{x}{x+y+z}\right)^{4}+\left(\frac{y}{x+y+z}\right)^{4}+\left(\frac{z}{x+y+z}\right)^{4} \geq 3 \cdot\left(\frac{1}{32}\right)^{\frac{4}{3}}
\end{aligned}
$$

Or

$$
\left(\frac{x}{x+y+z}\right)^{4}+\left(\frac{y}{x+y+z}\right)^{4}+\left(\frac{z}{x+y+z}\right)^{4} \geq \frac{3}{(2)^{\frac{20}{3}}}
$$

2. $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7}$ is a regular heptagon. Prove that $\frac{A_{1} A_{4}^{3}}{A_{1} A_{2^{3}}}-\frac{A_{1} A_{7}+2 A_{1} A_{6}}{A_{1} A_{5}-A_{1} A_{3}}=1$

Sol. B

$$
\begin{aligned}
& A_{1} A_{2}=A_{1} A_{7} \\
& A_{1} A_{3}=A_{1} A_{6} \\
& A_{1} A_{4}=A_{1} A_{5}
\end{aligned}
$$

Let radius of circumcircle $=R$

Centre $=0$

$\frac{A_{1} M}{R}=\sin \frac{\pi}{7} \Rightarrow A_{1} M=R \sin \frac{\pi}{7}$
$\Rightarrow A_{1} A_{2}=A_{1} A_{7}=2 R \sin / \pi \frac{\pi}{7}$

$$
\begin{equation*}
\angle A_{i} O A_{2}=\frac{2 \pi}{7} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Now To prove, } \frac{\left(A_{1} A_{4}\right)^{3}}{\left(A_{1} A_{2}\right)^{3}}-\frac{A_{1} A_{1}+2 A_{1} A_{6}}{A_{1} A_{5}-A_{1} A_{3}}=1 \\
& \text { To prove }, \frac{\left(A_{1} A_{4}\right)^{3}}{\left(A_{1} A_{2}\right)^{3}}=1+\frac{A_{1} A_{7}+2 A_{1} A_{6}}{A_{1} A_{5}-A_{1} A_{3}} \\
& \text { To prove }\left(\frac{A_{1} A_{4}}{A_{1} A_{2}}\right)^{3}=1+\frac{A_{1} A_{1}+2 A_{1} A_{3}}{A_{1} A_{4}-A_{1} A_{3}} \\
& \text { To prove }\left(\frac{A_{1} A_{4}}{A_{1} A_{2}}\right)^{3}=\frac{A_{1} A_{2}+A_{1} A_{3}+A_{1} A_{4}}{A_{1} A_{4}-A_{1} A_{3}} \\
& \text { I.e., }\left(\frac{\sin \frac{3 \pi}{7}}{\sin \frac{\pi}{7}}\right)^{3}=\frac{\sin \frac{\pi}{7}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}}{\sin \frac{3 \pi}{7}-\sin \frac{2 \pi}{7}} \\
& \text { R.H.S }=\frac{\sin \frac{\pi}{7}+\sin \frac{2 \pi}{7}+\sin \frac{3 \pi}{7}}{\sin \frac{3 \pi}{7}-\sin \frac{2 \pi}{7}} \\
& \quad=\frac{\sin \frac{3 \pi}{14} \sin \frac{2 \pi}{7}}{2 \sin \frac{\pi}{14} \sin \frac{2 \pi}{14} \cos \frac{5 \pi}{14}}=\frac{\sin \frac{3 \pi}{14} \sin \frac{2 \pi}{7} 2 \cos \frac{\pi}{14} \cos \frac{\pi}{14} \sin \frac{\pi}{14} \sin \frac{\pi}{7} 2 \cos \frac{\pi}{14} \cos \frac{\pi}{14}}{\sin \frac{3 \pi}{14} \sin \frac{2 \pi}{7} 2 \cos \frac{\pi}{14} \cos \frac{\pi}{14}} \\
& \sin \frac{\pi}{7} \sin \frac{\pi}{7} \sin \frac{\pi}{7} \\
& =\frac{2 \sin \frac{3 \pi}{14} \sin \frac{4 \pi}{14} \cos \frac{\pi}{14} \cos \frac{\pi}{14}}{\sin \frac{\pi}{7} \sin \frac{\pi}{7} \sin \frac{\pi}{7}} \\
& =\frac{\cos \frac{\pi}{14} \cos \frac{\pi}{14} \cos \frac{\pi}{14}}{\sin \frac{\pi}{7} \sin \frac{\pi}{7} \sin \frac{\pi}{7}}=\frac{\sin \frac{3 \pi}{7} \sin \frac{3 \pi}{7} \sin \frac{3 \pi}{7}}{\sin \frac{\pi}{7} \sin \frac{\pi}{7}}=\text { L.H.S. }
\end{aligned}
$$

3. $A B C D$ is a square whose side is 1 unit. Let n be an arbitrary natural number. A figure is drawn inside the square consisting of only line segments, having a total length greater than $2 n$. (This figure can have many pieces of single line segments intersecting or non-intersecting). Prove that for some straight-line L which is parallel to a side of the square must cross the figure at least $(n+1)$ times.

Sol. Ambiguity in Question.
4. m is a natural number. If $(2 m+1)$ and $(3 m+1)$ are perfect squares, then prove that m is divisible by 40 .

Sol. As ' m ' is a natural number, to prove its divisibility by 40 , we prove that ' m ' is divisible be $8 \& 5$.
Let $2 m+1=k^{2}$.

$$
\begin{equation*}
3 m+1=l^{2} \tag{i}
\end{equation*}
$$

As $2 m+1$ is odd, $\therefore k^{2}$ is odd and thus k is odd.
So, let $k=2 n+1 \Rightarrow k^{2}=4 n^{2}+4 n+1$ \qquad

$$
\begin{align*}
& \Rightarrow 2 m+1=4 n^{2}+4 n+1 \tag{iii}\\
& \Rightarrow m=2\left(n^{2}+n\right) \\
& \Rightarrow m=\text { an even number }
\end{align*}
$$

If ' m ' is even, $3 m+1$ is odd.
$\Rightarrow l^{2}$ is odd $\&$ thus l is odd.
Let $l=2 p+1 \Rightarrow l^{2}=(2 p+1)^{2}$
Now, subtracting (ii) \& (i),
$m=l^{2}-k^{2}$

$$
\begin{equation*}
=(2 p+1)^{2}-(2 n+1)^{2} . \tag{v}
\end{equation*}
$$

We know that, squares of two odd numbers are always divisible by 8
$\therefore m$ is divisible by 8 \qquad
Also, from (i) \& (ii)
$3 k^{2}-2 l^{2}=1$.
As squares of odd numbers ends with 1,5 or 9
$\Rightarrow 3 k^{2}$ ends with 3,5 or $7 \& 2 l^{2}$ ends with $2,0,8$
$\therefore k^{2}$ ends with $1 \& l^{2}$ ends with 1
$\Rightarrow m=l^{2}-k^{2} \quad$ (whose unit digit is zero)
$\therefore m$ is divisible by 5
From (vii) \& (viii), m is divisible by 40 .
5. Given 69 distinct positive integers not exceeding 100, prove that one can choose four of them a, b, c, d such that $a<b<c$ and $a+b+c=d$. Is this statement true for 68 ?

Sol. $a+b+c=d \Rightarrow c+a=d-b$
Let $a_{i}+a_{1}=f_{i} \forall_{i \in\{3,4, \ldots . ., 69\}}$
$\& a_{i}+a_{2}=g_{i} \forall_{i \in\{3,4, \ldots . ., 69\}}$
Now
$a_{3}+a_{1}<a_{4}+a_{1}<\ldots \ldots<a_{69}+a_{1} \leq 132$
And
$1 \leq a_{3}-a_{2}<a_{4}-a_{2}<\ldots \ldots \ldots . .<a_{69}-a_{2}$
$\Rightarrow f_{3}<f_{4}<\ldots \ldots<f_{69} \leq 132$
$\& 1 \leq g_{3}+g_{4}<$ \qquad $<g_{69}$
Now total counting of $f_{i} \& g_{i}$ are 134 which lies between 1 to 132
Because all $f_{i}^{\prime} s$ are distinct and all $g_{i}^{\prime} s$ are distinct, hence at least one f_{i} and g_{i} must be same
$\Rightarrow a_{i}+a_{1}=a_{j}-a_{2}$
$\Rightarrow a_{1}+a_{2}+a_{i}=a_{j}$
\Rightarrow First part is proved
This statement is not true for 68 e.g. let set of 68 numbers is $\{33,34, \ldots, 100\}$
In this set sum of least 3 number is greater than 100 \{because $33+34+35=102>100\}$
6. m, n are integers such that $n^{2}\left(m^{2}+1\right)+m^{2}\left(n^{2}+16\right)=448$. Find all possible ordered pairs (m, n).

Sol. $m^{2} n^{2}+n^{2}+m^{2} n^{2}+16 m^{2}=448$
$\Rightarrow 2 m^{2} n^{2}+n^{2}+16 m^{2}=448$
$\Rightarrow m^{2} n^{2}+\frac{n^{2}}{2}+8 m^{2}=224$
$\Rightarrow\left(m^{2}+\frac{1}{2}\right)\left(n^{2}+8\right)=228$
$\Rightarrow\left(2 m^{2}+1\right)\left(n^{2}+8\right)=456$
$\Rightarrow\left(2 m^{2}+1\right)\left(n^{2}+8\right)=3 \times 152$ or 19×24
Odd even
$\Rightarrow m^{2}=1, n^{2}=144$ or $m^{2}=9, n^{2}=16$
$\Rightarrow(m, n)=(1,12),(1,-12),(-1,12),(-1,-12)$ $(3,4),(3,-4),(-3,4),(-3,-4)$
7. $B D$ is the bisector of $\angle A B C$ of triangle $A B C$. The circumcircles of triangle $B C D$ and triangle $A B D$ cut $A B$ and $B C$ at E and F respectively. Show that $A E=C F$.

Sol. Construction: Join $D E$ and $D F$

Proof : $\operatorname{arc} A D=\operatorname{arc} D F$ for circumcircle of $\triangle A B D$

$$
\begin{aligned}
& \{\because \angle A B D=\angle D B F\} \\
& \Rightarrow A D=D F \ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow A D=D F \tag{1}
\end{equation*}
$$

Similarly $\operatorname{arc} E D=\operatorname{arc} D C$
For circumcircle of $\triangle B D C$
$\Rightarrow E D=D C$
Now $\angle E D C=180^{\circ}-\angle A B C$
Similarly $\angle A D F=180^{\circ}-\angle A B C$
$\Rightarrow \angle E D C=\angle A D F$
$\Rightarrow \angle E D C-\angle E D F=\angle A D F-\angle E D F$
$\Rightarrow \angle F D C=\angle A D E$ \qquad
Using (1), (2) \& (3) $\triangle A D E \cong \triangle F D C$
$\Rightarrow A E=F C$ (using CPCT)
8. a is a two-digit number. b is a three-digit number. a increased by b percent is equal to b decreased by a percent. Find all possible ordered pairs (a, b).

Sol. $\quad a+\frac{a b}{100}=b-\frac{a b}{100}$
$\Rightarrow \frac{a b}{50}+a-b=0$
$\Rightarrow a b+50 a-50 b=0$
$\Rightarrow(a-50)(b+50)=-2500$
$=-4 \times 625$ or
$=-5 \times 500$ or
$=-10 \times 250$ or
$\Rightarrow(a, b)=(46,575)$ or $(45,450)$ or $(40,200)$

