

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA AMTI – NMTC - 2023 Jan. – JUNIOR – FINAL

Instructions:

- 1. Answer all questions. Each question carries 10 marks.
- 2. Elegant and innovative solutions will get extra marks.
- 3. Diagrams and justification should be given wherever necessary.
- 4. Before answering, fill in the FACE SLIP completely.
- 5. Your 'rough work' should be in the answer sheet itself.
- 6. The maximum time allowed is THREE hours.
- **1.** x, y, z are positive reals and $(x + y + z)^3 = 32 xyz$. Find the numerical limits between which the expression $\frac{x^4 + y^4 + z^4}{(x+y+z)^4}$ lies?

Sol.
$$\frac{x^4 + y^4 + z^4}{(x+y+z)^4} = \frac{x^4}{(x+y+z)^4} + \frac{y^4}{(x+y+z)^4} + \frac{z^4}{(x+y+z)^4}$$

$$= \left(\frac{x}{x+y+z}\right)^4 + \left(\frac{y}{x+y+z}\right)^4 + \left(\frac{z}{x+y+z}\right)^4$$

Now, apply $AM \ge GM$ for numbers $\left(\frac{x}{x+y+z}\right)^4$, $\left(\frac{y}{x+y+z}\right)^4$, $\left(\frac{z}{x+y+z}\right)^4$ we get

$$\frac{\left(\frac{x}{x+y+z}\right)^4 + \left(\frac{y}{x+y+z}\right)^4 + \left(\frac{z}{x+y+z}\right)^4}{3} \ge \sqrt[3]{\left(\frac{xyz}{(x+y+z)^3}\right)^4}$$

We know that $(x + y + z)^3 = 32 xyz$

$$\left(\frac{x}{x+y+z}\right)^4 + \left(\frac{y}{x+y+z}\right)^4 + \left(\frac{z}{x+y+z}\right)^4 \ge 3\sqrt[3]{\left(\frac{1}{32}\right)^4}$$

$$\left(\frac{x}{x+y+z}\right)^4 + \left(\frac{y}{x+y+z}\right)^4 + \left(\frac{z}{x+y+z}\right)^4 \ge 3 \cdot \left(\frac{1}{32}\right)^{\frac{4}{3}}$$

Or

$$\left(\frac{x}{x+y+z}\right)^4 + \left(\frac{y}{x+y+z}\right)^4 + \left(\frac{z}{x+y+z}\right)^4 \ge \frac{3}{(2)^{\frac{20}{3}}}$$

2. $A_1A_2A_3A_4A_5A_6A_7$ is a regular heptagon. Prove that

$$\frac{A_1 A_4^3}{A_1 A_{2^3}} - \frac{A_1 A_7 + 2A_1 A_6}{A_1 A_5 - A_1 A_3} = 1$$

Sol. B

$$A_{1}A_{2} = A_{1}A_{7}$$

$$A_1 A_3 = A_1 A_6$$

$$A_1 A_4 = A_1 A_5$$

Let radius of circumcircle = R

Centre =
$$0$$

$$\frac{A_1M}{R} = \sin\frac{\pi}{7} \Rightarrow A_1M = R\sin\frac{\pi}{7}$$

$$\Rightarrow A_1 A_2 = A_1 A_7 = 2 R \sin/\pi \frac{\pi}{7} \dots (1)$$

$$\angle A_i O A_2 = \frac{2\pi}{7}$$

$$\begin{split} & \angle A_1 O A_3 = \frac{4\pi}{7} \\ & A_1 N = R \sin \frac{2\pi}{7} \\ & \Rightarrow A_1 A_3 = 2 d \sin \frac{3\pi}{7} = A_1 A_6 \dots (2) \end{split}$$

Now To prove,
$$\frac{\left(A_{1}A_{4}\right)^{3}}{\left(A_{1}A_{2}\right)^{3}} - \frac{A_{1}A_{1} + 2A_{1}A_{6}}{A_{1}A_{5} - A_{1}A_{3}} = 1$$
To prove,
$$\frac{\left(A_{1}A_{4}\right)^{3}}{\left(A_{1}A_{2}\right)^{3}} = 1 + \frac{A_{1}A_{7} + 2A_{1}A_{6}}{A_{1}A_{5} - A_{1}A_{3}}$$
To prove
$$\left(\frac{A_{1}A_{4}}{A_{1}A_{2}}\right)^{3} = 1 + \frac{A_{1}A_{1} + 2A_{1}A_{3}}{A_{1}A_{4} - A_{1}A_{3}}$$
To prove
$$\left(\frac{A_{1}A_{4}}{A_{1}A_{2}}\right)^{3} = \frac{A_{1}A_{2} + A_{1}A_{3} + A_{1}A_{4}}{A_{1}A_{4} - A_{1}A_{3}}$$
I.e.,
$$\left(\frac{\sin\frac{3\pi}{7}}{\sin\frac{\pi}{7}}\right)^{3} = \frac{\sin\frac{\pi}{7} + \sin\frac{2\pi}{7} + \sin\frac{3\pi}{7}}{\sin\frac{3\pi}{7} - \sin\frac{2\pi}{7}}$$

$$= \frac{\sin\frac{3\pi}{14}\sin\frac{2\pi}{7} + \sin\frac{2\pi}{7}}{\sin\frac{3\pi}{7} - \sin\frac{2\pi}{7}}$$

$$= \frac{\sin\frac{3\pi}{14}\sin\frac{2\pi}{7} + \sin\frac{2\pi}{7}}{2\sin\frac{\pi}{14}\sin\frac{2\pi}{7} + \cos\frac{\pi}{14}} = \frac{\sin\frac{3\pi}{14}\sin\frac{\pi}{7}2\cos\frac{\pi}{14}\cos\frac{\pi}{14}}{2\sin\frac{\pi}{14}\sin\frac{\pi}{7}2\cos\frac{\pi}{14}\cos\frac{\pi}{14}}$$

$$= \frac{\sin\frac{3\pi}{14}\sin\frac{2\pi}{7} - 2\cos\frac{\pi}{14}\cos\frac{\pi}{14}}{\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}}}{\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}}$$

 $= \frac{\cos\frac{\pi}{14}\cos\frac{\pi}{14}\cos\frac{\pi}{14}\cos\frac{\pi}{14}}{\sin\frac{\pi}{2}\sin\frac{\pi}{2}\sin\frac{\pi}{2}} = \frac{\sin\frac{3\pi}{7}\sin\frac{3\pi}{7}\sin\frac{3\pi}{7}\sin\frac{3\pi}{7}}{\sin\frac{\pi}{7}\sin\frac{\pi}{7}\sin\frac{\pi}{7}} = \text{L.H.S.}$

3. ABCD is a square whose side is $1 \, unit$. Let n be an arbitrary natural number. A figure is drawn inside the square consisting of only line segments, having a total length greater than 2n. (This figure can have many pieces of single line segments intersecting or non-intersecting). Prove that for some straight-line L which is parallel to a side of the square must cross the figure at least (n+1) times.

Sol. Ambiguity in Question.

4. m is a natural number. If (2m + 1) and (3m + 1) are perfect squares, then prove that m is divisible by 40.

Sol. As 'm' is a natural number, to prove its divisibility by 40, we prove that 'm' is divisible be 8 & 5.

Let
$$2m + 1 = k^2$$
......(i)
 $3m + 1 = l^2$(ii)
As $2m + 1$ is odd, $\therefore k^2$ is odd and thus k is odd.
So, let $k = 2n + 1 \Rightarrow k^2 = 4n^2 + 4n + 1$(iii)
 $\Rightarrow 2m + 1 = 4n^2 + 4n + 1$
 $\Rightarrow m = 2(n^2 + n)$
 $\Rightarrow m = \text{an even number}$
If 'm' is even, $3m + 1$ is odd.
 $\Rightarrow l^2$ is odd & thus l is odd.
Let $l = 2p + 1 \Rightarrow l^2 = (2p + 1)^2$(iv)
Now, subtracting (ii) & (i),
 $m = l^2 - k^2$
 $= (2p + 1)^2 - (2n + 1)^2$(v)
We know that, squares of two odd numbers are always divisible by 8

 \therefore m is divisible by 8(vi)

Also, from (i) & (ii)

$$3k^2 - 2l^2 = 1$$
....(vii)

As squares of odd numbers ends with 1,5 or 9

- \Rightarrow 3 k^2 ends with 3, 5 or 7 & $2l^2$ ends with 2, 0, 8
- $\therefore k^2$ ends with 1 & l^2 ends with 1
- $\Rightarrow m = l^2 k^2$ (whose unit digit is zero)
- $\therefore m$ is divisible by 5(viii)

From (vii) & (viii), m is divisible by 40.

5. Given 69 distinct positive integers not exceeding 100, prove that one can choose four of them a, b, c, d such that a < b < c and a + b + c = d. Is this statement true for 68?

Sol. $a + b + c = d \Rightarrow c + a = d - b$

Let
$$a_i + a_1 = f_i \quad \forall i \in \{3, 4, ..., 69\}$$

&
$$a_i + a_2 = g_i$$
 $\forall i \in \{3, 4, ..., 69\}$

Now

$$a_3 + a_1 < a_4 + a_1 < \dots < a_{69} + a_1 \le 132$$

And

$$1 \le a_3 - a_2 < a_4 - a_2 < \dots < a_{69} - a_2$$

$$\Rightarrow f_3 < f_4 < \dots < f_{69} \le 132$$

&
$$1 \le g_3 + g_4 < \dots < g_{69}$$

Now total counting of $f_i \& g_i$ are 134 which lies between 1 to 132

Because all f_i 's are distinct and all g_i 's are distinct, hence at least one f_i and g_i must be same

$$\Rightarrow a_i + a_1 = a_j - a_2$$

$$\Rightarrow a_1 + a_2 + a_i = a_j$$

⇒ First part is proved

This statement is not true for 68 e.g. let set of 68 numbers is {33, 34,......, 100}

In this set sum of least 3 number is greater than 100 { because 33 + 34 + 35 = 102 > 100}

6. m, n are integers such that $n^2(m^2 + 1) + m^2(n^2 + 16) = 448$. Find all possible ordered pairs (m, n).

Sol.
$$m^2n^2 + n^2 + m^2n^2 + 16 m^2 = 448$$

$$\Rightarrow 2 m^2 n^2 + n^2 + 16 m^2 = 448$$

$$\Rightarrow m^2 n^2 + \frac{n^2}{2} + 8 m^2 = 224$$

$$\Rightarrow (m^2 + \frac{1}{2})(n^2 + 8) = 228$$

$$\Rightarrow (2m^2 + 1)(n^2 + 8) = 456$$

$$\Rightarrow$$
 $(2 m^2 + 1)(n^2 + 8) = 3 \times 152 \text{ or } 19 \times 24$

Odd even

$$\Rightarrow m^2 = 1, n^2 = 144 \text{ or } m^2 = 9, n^2 = 16$$

$$\Rightarrow (m, n) = (1, 12), (1, -12), (-1, 12), (-1, -12)$$

$$(3,4), (3, -4), (-3,4), (-3,-4)$$

- 7. BD is the bisector of $\angle ABC$ of triangle ABC. The circumcircles of triangle BCD and triangle ABD cut AB and BC at E and E respectively. Show that E is the bisector of E and E is the bisector
- **Sol.** Construction: Join *DE* and *DF*

Proof:
$$arc\ AD = arc\ DF$$
 for circumcircle of $\triangle ABD$ $\{\because \angle ABD = \angle DBF\}\}$ $\Rightarrow AD = DF$ (1) Similarly $arc\ ED = arc\ DC$ For circumcircle of $\triangle BDC$ $\Rightarrow ED = DC$ (2) Now $\angle EDC = 180^{\circ} - \angle ABC$ Similarly $\angle ADF = 180^{\circ} - \angle ABC$ $\Rightarrow \angle EDC = \angle ADF$ $\Rightarrow \angle EDC = \angle ADF = \angle ADF - \angle EDF$ $\Rightarrow \angle FDC = \angle ADE$ (3) Using (1),(2) & (3) $\triangle ADE \cong \triangle FDC$ $\Rightarrow AE = FC$ (using $CPCT$)

8. a is a two-digit number. b is a three-digit number. a increased by b percent is equal to b decreased by a percent. Find all possible ordered pairs (a, b).

Sol.
$$a + \frac{ab}{100} = b - \frac{ab}{100}$$

 $\Rightarrow \frac{ab}{50} + a - b = 0$
 $\Rightarrow ab + 50 a - 50 b = 0$
 $\Rightarrow (a - 50) (b + 50) = -2500$
 $= -4 \times 625$ or
 $= -5 \times 500$ or
 $= -10 \times 250$ or
 $\Rightarrow (a, b) = (46, 575)$ or $(45, 450)$ or $(40, 200)$