Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA AMTI - NMTC - 2023 Jan. - SUB-JUNIOR - FINAL

Instructions:

1. Answer all questions. Each question carries 10 marks.
2. Elegant and innovative solutions will get extra marks.
3. Diagrams and justification should be given wherever necessary.
4. Before answering, fill in the FACE SLIP completely.
5. Your 'rough work' should be in the answer sheet itself.
6. The maximum time allowed is THREE hours.
7. A tray contains of 40 toffees. Jaya and Uma take in turn some toffees from the tray. Each time they are allowed to take 1,2 or 3 toffees only. The person who gets the last toffee, wins. Jaya starts the game. Will she win? If so, how? If not, why?
Sol. Jaya and Uma both want to win.
So, Uma will try to pick the number of toffee in such a way, that Uma and Jaya get 4 toffee in every turn
$1+3$ or $2+2$ or $3+1$
So in 9 rounds
Uma and Jaya will pick $9 \times 4=36$ toffee
Now even Jaya pick 3 or 2 or 1, Uma will pick 1 or 2 or 3 toffee at last,
Hence, Uma will win.
8. Given $A=\left\{\frac{\frac{(a+b)^{2}+(a-b)^{2}}{b-a}-(a+b)}{\frac{1}{b-a}-\frac{1}{c-a}}\right\} \div\left\{\frac{(a+b)^{3}+(b-a)^{3}}{(a+b)^{2}+(a-b)^{2}}\right\}$
$\left.B=\left\{\frac{c-b}{(a-b)(a-c)}-\frac{c-a}{(b-c)(b-a)}+\frac{b-a}{(c-a)(a-b)}\right\} \div \frac{2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)}{(a-b)(b-c)(c-a)}\right\}$
If $a=2022, b=2023$, find $(A+B)$.
Sol. $A=\left(\frac{\frac{2 a^{2}+2 b^{2}-\left(b^{2}-a^{2}\right)}{(b-a)}}{\frac{a+b-(b-a)}{(b-a)(b+a)}}\right) \div\left\{\frac{(a+b+b-a)\left[(a+b)^{2}+(b-a)^{2}+(a+b)(b-a)\right]}{2 a^{2}+2 b^{2}}\right]$

$$
\begin{aligned}
& A=\frac{3 a^{2}+b^{2}}{(b-a)} \times \frac{(b-a)(b+a)}{2 a} \times \frac{2\left(a^{2}+b^{2}\right)}{2 b\left[3 a^{2}+b^{2}\right]} \\
& A=\frac{\left(a^{2}+b^{2}\right)(a+b)}{2 a b} \\
& B=\left\{\frac{b-c}{(a-b)(c-a)}+\frac{c-a}{(b-c)(a-b)}+\frac{(a-b)}{(c-a)(c-b)}\right\} \div \frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a-b)(b-c)(c-a)} \\
& B=\frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a-b)(b-c)(c-a)} \times \frac{(a-b)(b-c)(c-a)}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}} \\
& B=1 \\
& A=\frac{\left(a^{2}+b^{2}\right)(a+b)}{2 a b} ; B=1
\end{aligned}
$$

So
$A+B=\frac{\left(2022^{2}+2023^{2}\right)(2022+2023)}{2 \times 2022 \times 2023}+1$
$A+B=4046$.
3. There are square papers of areas $1,2,3, \ldots$ square millimeters. Asif started coloring them with red and green paint. He painted in red the papers whose areas can be written as the sum of two composite numbers and the rest in green. How many papers are painted green and what are their areas?

Opposite numbers are $4,6,8,9,10,12,14,15,16,18,20,21,22,24,25, \ldots \ldots$
Papers with green paint have the areas that can't be the sum of the two composite numbers, so areas of green painted papers are-
$1,2,3,4,5,6,7,8,9,11$ only rest all can be the sum of two composite number lines.
$12=8+4,13=4+9,14=8+6,15=9+6.16=10+6$ and 80 on
So required sum is $1+2+3+4+5+6+7+8+9+11=56$
Number of green painted papers $=10$.
4. Find natural numbers a, b, c such that their sum is 6 , sum of their squares is 14 and the sum of the products of a and c, and b and c is equal to the square of one more than the product of a and b.

Sol. $a+b+c=6$
$a^{2}+b^{2}+c^{2}=14$
$a c+b c=(a b+1)^{2}$
$\Rightarrow a b+b c+a c=11$
$\Rightarrow a^{2} b^{2}+1+2 a b+a b=11$
$\Rightarrow a^{2} b^{2}+3 a b=10$
$\Rightarrow a\left(a b^{2}+3 b\right)=10$
(1) $a=5 \& a b^{2}+3 b=2$
$a, b \& c \in N$
$\Rightarrow a b^{2}+3 b>2$
\therefore Rejected
OR
$a=2 \& a b^{2}+3 b=5$
$\Rightarrow a=2$
(1) $\Rightarrow b+c=4, b^{2}+c^{2}=10$

Sq. $b^{2}+c^{2}+2 b c=16$
$\Rightarrow b c=3 \Rightarrow b=3 \& C=1$
are $b=1 \& C=3$
(2) $a=10 \& a b^{2}+3 b=1$
$a, b \& c \in N$
$\Rightarrow a b^{2}+3 b>1$
\therefore Rejected
OR
$a=1 \& a b^{2}+3 b=10$
$\Rightarrow a=1$
(1) $\Rightarrow b+c=5, b^{2}+c^{2}=13$

Sq. $b^{2}+c^{2}+2 b c=25$
$\Rightarrow 2 b C=12$
$\Rightarrow b c=6$
$b=1 \& C=6$ or $b=6 \& C=1$
\therefore Rejected as it does not satisfy equation 3
$b=2 \& C=3$ it satisfies or $b=3 \& C=2$ it does not satisfy

Two solutions: $a=2, b=1, C=3$

$$
a=1, b=2, C=3
$$

5. The volumes of three cubic containers C_{1}, C_{2} and C_{3} are in the ration 1:8:27. The amount of water in them are in the ratio 1:2:3. Water is poured from C_{1} to C_{2} and from C_{2} to C_{3} then the water level in all the containers is the same. Now $128 \frac{4}{7}$ liters of water is poured out from C_{3} to C_{2} after which a certain amount is poured from C_{2} to C_{1} so that the depth of water in C_{1} becomes twice that in C_{2}. This results in the amount of water in $C_{1} 100$ liters less than the original amount. How much water did each container contain originally?

Sol. $l_{1}: l_{2}: l_{3}=1: 2: 3$

$x^{2} h_{1}:(2 x)^{2} h_{2}:(3 x)^{2} h_{3}=1: 2: 3$
$\Rightarrow h_{1}: 4 h_{2}: 9 h_{3}=1: 2: 3$
$\Rightarrow h_{1}=2 h_{2}: 3 h_{3}$
$\Rightarrow h_{1}: h_{2}: h_{3}=6: 3: 2$
Let $h_{1}=6 y, h_{2}=3 y, h_{3}=2 y$

Total volume in container $=6 x^{2} y+12 x^{2} y+18 x^{2} y$
Now $h x^{2}+h\left(4 x^{2}\right)+h\left(9 x^{2}\right)=36 x^{2} y$
$\Rightarrow 14 x^{2} h=36 x^{2} y$
$\Rightarrow h=\frac{36}{14} y=\frac{18}{7} y$

$h=\frac{18}{7} y$

$V_{1}=2 m x^{2} \quad V_{2}=4 x^{2} m$
$\Rightarrow V_{2}=2 V_{1}$
$\Rightarrow\left(\frac{72}{7} x^{2} y+\frac{100}{7}-z\right)=2\left(\frac{18}{7} x^{2} y+z\right)$
$\Rightarrow \frac{36}{7} x^{2} y+\frac{100}{7}=3 z$
$\Rightarrow z=\frac{12}{7} x^{2} y+\frac{100}{21}$
$\Rightarrow \frac{18}{7} x^{2} y+\frac{12}{7} x^{2} y+\frac{100}{21}=6 x^{2} y-100$
$\Rightarrow \frac{100}{21}+100=\left(6-\frac{30}{7}\right) x^{2} y$
$\Rightarrow \frac{2200}{21}=\frac{12}{7} x^{2} y$
$\Rightarrow x^{2} y=\frac{2200 \times 7}{21 \times 12}=\frac{550}{9}$
Volume of water in C_{1} is $6 \times \frac{550}{9}=\frac{1100}{3}$
Volume of water in C_{2} is $\frac{2200}{3}$
Volume of water in C_{3} is $\frac{3300}{3}$.
6. In the adjoining figure, $A B C D E F$ and $D E G H I$ are respectively a regular hexagon and a regular pentagon. P is the intersection of $A F$ and $H G$ and similarly Q. The bisector of $\angle F P G$ cuts $A B$ produced at R. Prove that $\angle Q=8 \angle R$.

Sol.

Each interior angle of a regular hexagon $=120^{\circ}$
Each interior angle of a regular pentagon $=108^{\circ}$
$\Rightarrow \angle P F E=60^{\circ} \& \angle P G E=72^{\circ} \& \angle F E G=132^{\circ}$
$60^{\circ}+\angle F P G+72^{0}+132^{\circ}=360^{\circ}$
$\Rightarrow \angle F P G=96^{\circ}$
$\Rightarrow \angle A P R=48^{\circ} \quad(P R$ is angle bisector $)$
$\Rightarrow \angle R=12^{0}$
By angle sum property in $A P H Q B$

```
\(\angle Q=540^{0}-\left(120^{0}+120^{0}+96+108^{0}\right)\)
    \(=96^{\circ}\)
```

$\Rightarrow \angle Q=8 \angle R$
7. $P Q R$ is an equilateral triangle. S is any point inside the triangle. $S A, S B, S C$ are respectively drawn perpendiculars to $P R, R Q$ and $P Q$. Find the ratio of $\frac{S A+S B+S C}{Q A+R B+P C}$.
Sol.

It is given that $\triangle P Q R$ is an equilateral triangle. Let S be orthocentre of $\triangle P Q R$.
Let the side is a for equilateral triangle A, B, C are midpoint of sides $P R, Q R$ and $P Q$ respectively.
$A R=\frac{a}{2}=B R=P C$
In $\triangle A Q R, A Q=\sqrt{a^{2}-\left(\frac{a}{2}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{a^{2}-\frac{a^{2}}{4}} \\
& =\frac{\sqrt{3}}{2} a
\end{aligned}
$$

For equilateral triangle orthocentre and centroid are same point.
Therefore S divide $Q A$ in Radio 2: 1
Hence $A S=\frac{1}{3} \times \frac{\sqrt{3}}{2} a$

$$
=\frac{\sqrt{3}}{6} a
$$

Similarly $S B=S C=\frac{\sqrt{3}}{6} a$
Now $\frac{S A+S B+S C}{Q A+R B+P C}=\frac{\frac{\sqrt{3}}{6} a+\frac{\sqrt{3}}{6} a+\frac{\sqrt{3}}{6} a}{\frac{\sqrt{3}}{2} a+\frac{a}{2}+\frac{a}{2}}$

$$
=\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}+1}=\frac{\sqrt{3}}{\sqrt{3}+2}
$$

8. In the adjoining figure, four equal circles of radius 7 cm each are drawn with centers at the four vertices of a quadrilateral. Find the total area of the shaded sectors.

Sol. As the sum of all angles of a quadrilateral is 360°,
\therefore Sum of all the central angles is 360°
Thus, total area of shaded sectors
$=\frac{360^{\circ}}{360^{\circ}} \times \pi r^{2}$
$=\frac{360^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7 \times 7 \mathrm{~cm}^{2}$
$=154 \mathrm{~cm}^{2}$.

