

# CHEMISTRY

# **SECTION - A**

**Multiple Choice Questions:** This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

#### Choose the correct answer :

Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

**Assertion (A):** Cu<sup>2+</sup> in water is more stable than Cu<sup>+</sup>.

**Reason (R):** Enthalpy of hydration for Cu<sup>2+</sup> is much less than that of Cu<sup>+</sup>.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) (A) is not correct but (R) is correct
- (3) (A) is correct but (R) is not correct
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)

# Answer (3)

- **Sol.** Cu<sup>2+</sup> in water is more stable than Cu<sup>+</sup> due to much higher hydration enthalpy of Cu<sup>2+</sup> ion. Hence correct answer is option (3)
- 32. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

**Assertion (A):**  $\alpha$ -halocarboxylic acid on reaction with dil NH<sub>3</sub> gives good yield of  $\alpha$ -amino carboxylic acid whereas the yield of amines is very low when prepared from alkyl halides.

**Reason (R):** Amino acids exist in zwitter ion form in aqueous medium.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) (A) is correct but (R) is not correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)



#### Sol. Statement-I:



**Statement-II**: Reason is a correct statement as amino do exist as a zwitter ion. Reason is also a correct explanation.

- 33. Which element is not present in Nessler's reagent?
  - (1) Potassium (2) Oxygen
  - (3) Mercury (4) Iodine

# Answer (2)

- Sol. Nessler's reagent is K<sub>2</sub>[Hgl<sub>4</sub>]
- 34. All structures given below are of vitamin C. Most stable of them is:



# Answer (1)



Sol. Most stable structure of vitamin(C) is :



35. Which one of the following sets of ions represents a collection of isoelectronic species?

(Given : Atomic Number : F : 9, CI : 17, Na = 11, Mg

- = 12, AI = 13, K = 19, Ca = 20, Sc = 21)
- (1) Ba<sup>2+</sup>, Sr<sup>2+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>
- (2) N<sup>3-</sup>, O<sup>2-</sup>, F<sup>-</sup>, S<sup>2-</sup>
- (3) K+, CI-, Ca2+, Sc3+
- (4) Li+, Na+, Mg<sup>2+</sup>, Ca<sup>2+</sup>

# Answer (3)

Sol. Isoelectronic species have same number of electrons.

 $k^+$ ,  $Cl^-$ ,  $Ca^{2+}$  and  $Sc^{3+}$  all have 18 electrons, hence these are isoelectronic.

- 36. The correct order of bond enthalpy (kJ mol-1) is
  - (1) C C > Si Si > Sn Sn > Ge Ge
  - (2) Si Si > C C > Sn Sn > Ge Ge
  - (3) C C > Si Si > Ge Ge > Sn Sn
  - (4) Si Si > C C > Ge Ge > Sn Sn

# Answer (3)

| Sol. | Bond                       | Bond energy |
|------|----------------------------|-------------|
|      |                            | (kJ mol⁻¹)  |
|      | C–C                        | 348         |
|      | Si–Si                      | 297         |
|      | Ge–Ge                      | 260         |
|      | Sn–Sn                      | 240         |
|      | Correct answer will be (3) |             |
|      |                            |             |

#### JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening

- 37. The industrial activity held least responsible for global warming is
  - (1) industrial production of urea
  - (2) manufacturing of cement
  - (3) steel manufacturing
  - (4) Electricity generation in thermal power plants

# Answer (1)

- **Sol.** Industrial production of urea is least responsible for global warming.
- 38. The structures of major products A, B and C in the following reaction are sequence.



Answer (1)



 The starting material for convenient preparation of deuterated hydrogen peroxide (D<sub>2</sub>O<sub>2</sub>) in laboratory is

(1) 2-ethylanthraquinol (2) BaO

(3)  $BaO_2$  (4)  $K_2S_2O_8$ 

# Answer (4)

Sol.  $K_2S_2O_8$  is used in the laboratory preparation of  $D_2O_2$ 

 $K_2S_2O_8(s) + 2D_2O(I) \rightarrow 2KDSO_4(aq) + D_2O_2(I)$ 

# JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening



Answer (3)



41. Given below are two statements: one is labelled asAssertion (A) and the other is labelled as Reason (R).

**Assertion (A) :** An aqueous solution of KOH when used for volumetric analysis, its concentration should be checked before the use.

**Reason (R) :** On aging, KOH solution absorbs atmospheric CO<sub>2</sub>.

In the light of the above statements, choose the **correct** answer from the options given below :

- Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct

# Answer (2)

**Sol.** KOH absorbs CO<sub>2</sub> get converted to K<sub>2</sub>CO<sub>3</sub>

$$\mathsf{KOH} + \mathsf{CO}_2 \longrightarrow \mathsf{K}_2\mathsf{CO}_3 + \mathsf{H}_2\mathsf{O}$$

42. Given below are two statements :



- Statement I : Sulphanilic acid gives esterification test for carboxyl group.
  - Statement II : Sulphanilic acid gives red colour in Lassigne's test for extra element detection.

In the light of the above statements, choose the **most appropriate** answer from the options given below :

- (1) Statement I is incorrect but Statement II is correct
- (2) Both **Statement I** and **Statement II** are incorrect
- (3) Statement I is correct but Statement II is incorrect

# (4) Both Statement I and Statement II are correct Answer (1)

Sol. Sulphanilic acid is p-amino benzene sulphonic acid



Since it contain both N and S so it give red colour in Lassaigne's test.

- 43. The complex cation which has two isomers is:
  - (1)  $[Co(NH_3)_5CI]^+$  (2)  $[Co(H_2O)_6]^{3+}$
  - (3) [Co(NH<sub>3</sub>)<sub>5</sub>NO<sub>2</sub>]<sup>2+</sup> (4) [Co(NH<sub>3</sub>)<sub>5</sub>Cl]<sup>2+</sup>

# Answer (3)

- **Sol.** Complex [Co(NH<sub>3</sub>)<sub>5</sub>NO<sub>2</sub>]<sup>2+</sup> will have two isomer one linked through N (Nitro) and one through O (Nitrite).
- 44. The graph which represents the following reaction is :





# Answer (2)

**Sol.** Rate =  $K[(C_6H_5)_3C - CI]$ 

The correct mechanism is S<sub>N</sub>1.



45. In a reaction,



reagents 'X' and 'Y' respectively are :

- (1) (CH<sub>3</sub>CO)<sub>2</sub>O/H<sup>+</sup> and (CH<sub>3</sub>CO)<sub>2</sub>O/H<sup>+</sup>
- (2) CH<sub>3</sub>OH/H<sup>+</sup>,  $\Delta$  and CH<sub>3</sub>OH/H<sup>+</sup>,  $\Delta$
- (3) (CH<sub>3</sub>CO)<sub>2</sub>O/H<sup>+</sup> and CH<sub>3</sub>OH/H<sup>+</sup>,  $\Delta$
- (4) CH<sub>3</sub>OH/H<sup>+</sup>,  $\Delta$  and (CH<sub>3</sub>CO)<sub>2</sub>O/H<sup>+</sup>

# Answer (3)





methyl salicylate

46. In figure, a straight line is given for Freundrich Adsorption (y = 3x + 2.505). The value of  $\frac{1}{n}$  and log K are respectively.



# JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening

- (1) 3 and 2.505 (2) 0.3 and 0.7033
- (3) 0.3 and log 2.505 (4) 3 and 0.7033

# Answer (1)

**Sol.**  $\log \frac{x}{m} = \log k + \frac{1}{n} \log p$ 

On comparing, we get

$$\frac{1}{2} = 3 \implies n = 0.3$$
 and log k = 2.505

47. The effect of addition of helium gas to the following reaction in equilibrium state, is

 $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$ 

- the equilibrium will go backward due to suppression of dissociation of PCI₅
- (2) addition of helium will not affect the equilibrium
- (3) the equilibrium will shift in the forward direction and more of  $Cl_2$  and  $PCl_3$  gases will be produced
- (4) helium will deactivate PCI<sub>5</sub> and reaction will stop

# Answer (3)

- **Sol.** If we consider addition of He gas at constant pressure, the reaction will shift in forward direction [As rigid container is not given]
- 48. For electron gain enthalpies of the elements denoted as  $\Delta_{eg}H$ , the incorrect option is

(1) 
$$\Delta_{eg}H(CI) < \Delta_{eg}H(F)$$
 (2)  $\Delta_{eg}H(Se) < \Delta_{eg}H(S)$ 

(3)  $\Delta_{eg}H(I) < \Delta_{eg}H(At)$  (4)  $\Delta_{eg}H(Te) < \Delta_{eg}H(Po)$ 

Answer (2)

**Sol.** 
$$\Delta H_{eg}$$
 (Cl) = -349 kJ/mole  $\Delta H_{eg}$  (F) = -333 kJ/mole

$$\Delta H_{eq}$$
 (I) = -296 kJ/mole

 $\Delta H_{eq}$  (Se) = -195 kJ/mole

 $\Delta H_{eq}(S) = -200 \text{ kJ/mole}$ 

$$\Delta H_{eq}$$
 (Te) = -190 kJ/mole

$$\Delta H_{eq}$$
 (Po) = -174 kJ/mole

Electron gain enthalpy of Se is less negative than that of sulphur.

#### JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening

49. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

**Assertion (A):** Gypsum is used for making fireproof wall boards.

**Reason (R):** Gypsum is unstable at high temperatures.

In the light of the above statements, choose the **correct** answer from the options given below

- Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) (A) is correct but (R) is not correct
- (3) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (4) (A) is not correct but (R) is correct

# Answer (3)

- Sol. Both statements are correct. However, II<sup>nd</sup> statement has no relation with I<sup>st</sup> Statement.
- 50. O O bond length in  $H_2O_2$  is  $\underline{X}$  than the O O bond length in  $F_2O_2$ . The O H bond length in  $H_2O_2$  is  $\underline{Y}$  than that of the O F bond in  $F_2O_2$ .

Choose the correct option for  $\underline{X}$  and  $\underline{Y}$  from those given below

- (1) X shorter, Y shorter
- (2) X shorter, Y longer
- (3) X longer, Y shorter
- (4) X longer, Y longer

# Answer (3)

Sol. X – longer [because of more p-character in O – F bond]

Y – shorter [size of H is very small as compared to F]

**Numerical Value Type Questions:** This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

**SECTION - B** 

51. Testosterone, which is a steroidal hormone, has the following structure.



The total number of asymmetric carbon atom/s in testosterone is \_\_\_\_\_.

# Answer (6)

Sol.



The total number of asymmetric carbon atoms in testosterone is 6.

52. A metal M crystallizes into two lattices: face centred cubic (fcc) and body centred cubic (bcc) with unit cell edge length of 2.0 and 2.5 Å respectively. The ratio of densities of lattices fcc to bcc for the metal M is \_\_\_\_\_.

(Nearest integer)







**Sol.** d<sub>1</sub>, Density of fcc lattice of metal M =  $\frac{4 \times M}{N_0(a_{fcc})^3}$ 

d<sub>2</sub>, Density of bcc lattice of metal M =  $\frac{2 \times M}{N_0 (a_{bcc})^3}$ 

$$\frac{d_1}{d_2} = \frac{4}{2} \left( \frac{a_{bcc}}{a_{fcc}} \right)^3 = 2 \left( \frac{2.5}{2} \right)^3 = 3.90 \simeq 4$$

53.  $A \rightarrow B$ 

The above reaction is of zero order. Half life of this reaction is 50 min. The time taken for the concentration of A to reduce to one-fourth of its initial value is \_\_\_\_\_ min.

# Answer (75)

**Sol.**  $A \xrightarrow{a-x} B_x$  (Zero Order reaction)

 $a-x=\frac{a}{4} \Rightarrow x=\frac{3a}{4}$ 

$$t_{\frac{1}{2}} = \frac{a}{2K} = 50 \text{ min.} \Rightarrow \frac{a}{K} = 100 \text{ min.}$$

$$t = \frac{x}{K} = \frac{3a}{4K} = 75$$
 min.

54. 0.3 g of ethane undergoes combustion at 27°C in a bomb calorimeter. The temperature of calorimeter system (including the water) is found to rise by 0.5°C. The heat evolved during combustion of ethane at constant pressure is \_\_\_\_\_ kJ mol<sup>-1</sup>.

(Nearest integer)

[Given: The heat capacity of the calorimeter system is 20 kJ K<sup>-1</sup>, R = 8.3 JK<sup>-1</sup> mol<sup>-1</sup>.

Assume ideal gas behaviour.

Atomic mass of C and H are 12 and 1 g mol<sup>-1</sup> respectively]

# Answer (1006)

**Sol.** 
$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$$

#### JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening

No. of moles of ethane =  $\frac{0.3}{30} = 0.01$ Heat evolved in Bomb calorimeter =  $20 \times 0.5$ = 10 kJ  $\Delta U = -\frac{10}{0.01} = -1000 \text{ kJ mol}^{-1}$   $\Delta H = \Delta U + \Delta n_g RT$ =  $-1000 + (-2.5) \times \frac{8.3 \times 300}{1000}$ = -1000 - 6.225= -1006.225| $\Delta H$ |  $\approx 1006 \text{ kJ mol}^{-1}$ 

55. The spin only magnetic moment of [Mn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> complexes is \_\_\_\_\_ B.M. (Nearest integer)
 (Given: Atomic no. of Mn is 25)

Answer (6)

Sol. 
$$\left[ Mn(H_2O)_6 \right]^2$$

Mn<sup>2+</sup> : 3*d*<sup>5</sup>

No. of unpaired electrons = 5

$$\mu = \sqrt{35} \text{ BM} \simeq 6 \text{ BM}$$

56. 20% of acetic acid is dissociated when its 5 g is added to 500 mL of water. The depression in freezing point of such water is \_\_\_\_\_ ×  $10^{-3^{\circ}}$ C. Atomic mass of C, H and O are 12, 1 and 16 a.m.u. respectively.

[Given : Molal depression constant and density of water are 1.86 K kg mol<sup>-1</sup> and 1 g cm<sup>-3</sup> respectively.

# Answer (372)

Sol. 
$$CH_{3}COOH = H^{+} + CH_{3}COO^{-}$$
  
 $i = 1.2$   
 $[CH_{3}COOH] = \frac{5}{60 \times 0.5} = \frac{5}{30}M$   
 $\Delta T_{f} = i K_{f} m$   
 $1.2 \times 1.86 \times \frac{5}{30} = 0.372 \,^{\circ}C$   
 $= 372 \times 10^{-3} \,^{\circ}C$ 

#### JEE (Main)-2023 : Phase-1 (01-02-2023)-Evening

57. 1 × 10<sup>-5</sup> M AgNO<sub>3</sub> is added to 1 L of saturated solution of AgBr. The conductivity of this solution at 298 K is \_\_\_\_\_\_ × 10<sup>-8</sup> S m<sup>-1</sup>. [Given : K<sub>SP</sub>(AgBr) = 4.9 × 10<sup>-3</sup> at 298 K  $\lambda_{Ag^+}^0 = 6 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$  $\lambda_{Br^-}^0 = 8 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$  $\lambda_{NO_3}^0 = 7 \times 10^{-3} \text{ S m}^2 \text{ mol}^{-1}$ ]

# Answer (13039.2)

**Sol.** AgBr(S) 
$$\Longrightarrow$$
  $Ag^{+}_{(10^{-5}+x)}(aq) + Br^{-}_{x}(aq)$ 

- $x(x + 10^{-5}) = 4.9 \times 10^{-13}$
- $x \simeq 4.9 \times 10^{-8} M$
- $\lambda^{0}_{Aa^{+}} = 6 \times 10^{-3} \text{ S cm}^{2} \text{ mol}^{-1}$
- $\lambda^{0}_{Br^{-}} = 8 \times 10^{-3} \text{ S cm}^{2} \text{ mol}^{-1}$
- $\lambda_{NO_{-}}^{0} = 7 \times 10^{-3} \text{ S cm}^{2} \text{ mol}^{-1}$
- $\mathbf{K}_{\text{solution}} = \mathbf{K}_{Ag^+} + \mathbf{K}_{Br^-} + \mathbf{K}_{NO_3^-}$
- $= 6 \times 10^{-3} \times 10^{-5} \times 10^{3} + 8 \times 10^{-3} \times 4.9 \times 10^{-8} \times 10^{3}$  $+ 7 \times 10^{-3} \times 10^{-5} \times 10^{3}$
- = (6000 + 39.2 + 7000) × 10<sup>-8</sup>
- = 13039.2 × 10<sup>-8</sup> Sm<sup>-1</sup>
- 58. Among the following, the number of tranquilizer/s is /are \_\_\_\_\_.
  - A. Chloroliazepoxide
  - B. Veronal
  - C. Valium
  - D. Salvarsan

# Answer (3)

- Sol. Chloroliazepoxide
  - Veronal

Valium

Salvarsan is an antibiotic

59. The molarity of a 10% (v/v) solution of di-bromine solution in CCl<sub>4</sub> (carbon tetrachloride) is 'x'.

x =\_\_\_\_\_  $\times 10^{-2}$  M. (Nearest integer)

[Given : molar mass of Br<sub>2</sub> = 160 g mol<sup>-1</sup>

atomic mass of  $C = 12 \text{ g mol}^{-1}$ 

atomic mass of  $CI = 35.5 \text{ g mol}^{-1}$ 

density of dibromine =  $3.2 \text{ g cm}^{-3}$ 

density of CCl<sub>4</sub> =  $1.6 \text{ g cm}^{-3}$ ]

# Answer (139)

**Sol.** Mass of 10 mL of  $Br_2 = 10 \times 3.2 = 32$  gm

Mass of 90 mL of CCl<sub>4</sub> = 90 × 1.6 = 144 gm

Molality of Br<sub>2</sub> solution in CCl<sub>4</sub> =  $\frac{32 \times 1000}{160 \times 144}$ 

= 1.39 M

= 139 × 10<sup>-</sup>

- 60. Among following compounds, the number of those present in copper matte is \_\_\_\_\_.
  - A. CuCO₃
  - B. Cu<sub>2</sub>S
  - C. Cu<sub>2</sub>O
  - D. FeO
- Answer (3)
- Sol. Copper matte contains
  - Cu<sub>2</sub>S, Cu<sub>2</sub>O, FeO