MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. If the orthocentre of the triangle, whose vertices are $(1,2),(2,3)$ and $(3,1)$ is (α, β), then the quadratic equation whose roots are $\alpha+4 \beta$ and $4 \alpha+\beta$, is
(1) $x^{2}-20 x+99=0$
(2) $x^{2}-19 x+90=0$
(3) $x^{2}-22 x+120=0$
(4) $x^{2}-18 x+99=0$

Answer (1)
Sol.

Altitude of $B C$ is $y-2=\frac{1}{2}(x-1) \Rightarrow x-2 y+3=0$
Altitude of $A B$ is $y-1=(-1)(x-3) \Rightarrow x+y=4$
\therefore Orthocentre $\left(\frac{5}{3}, \frac{7}{3}\right)$
$\therefore \alpha+4 \beta=11$ and $4 \alpha+\beta=9$
Equation is $x^{2}-20 x+99=0$
62. The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are $1,3,5$, then the sum of cubes of the remaining two observations is
(1) 1456
(2) 1216
(3) 1792
(4) 1072

Answer (4)
Sol. Let observations 1, 3, 5, a, b
$\Rightarrow \frac{9+a+b}{5}=5 \& \frac{a^{2}+b^{2}+35}{5}-25=8$
$\Rightarrow a+b=16 \& a^{2}+b^{2}=130$
$\therefore \quad a \& b$ are $7 \& 9$
$\therefore \quad a^{3}+b^{3}=7^{3}+9^{3}=1072$
63. If the centre and radius of the circle $\left|\frac{z-2}{z-3}\right|=2$ are respectively (α, β) and γ, then $3(\alpha+\beta+\gamma)$ is equal to
(1) 10
(2) 12
(3) 11
(4) 9

Answer (2)
Sol. $(x-2)^{2}+y^{2}=4(x-3)^{2}+4 y^{2}$
$\Rightarrow 3 x^{2}+3 y^{2}-20 x+32=0$
$\therefore \quad C \equiv\left(\frac{10}{3}, 0\right) \& r=\sqrt{\left(\frac{10}{3}\right)^{2}-\frac{32}{3}}=\frac{2}{3}$
$\therefore \quad 3(\alpha+\beta+\gamma)=3\left(\frac{12}{3}\right)=12$
64. If $y=y(x)$ is the solution curve of the differential equation $\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$, then $y\left(\frac{\pi}{6}\right)$ is equal to
(1) $\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$
(2) $\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$
(3) $\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$
(4) $\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$

Answer (4)

Sol. $\frac{d y}{d x}+y \tan x=x \sec x$
$\therefore \quad$ I.F $=e^{\int \tan x d x}=\sec x$
$\Rightarrow \quad y \sec x=\int x \sec ^{2} x d x$
$\Rightarrow y \sec x=x \tan x-\ln |\sec x|+c \cos x$

$$
\downarrow y(0)=1
$$

$\Rightarrow 1=e$
$\therefore \quad y=x \sin x-\cos x \ln |\sec x|+\cos x$
$\therefore \quad y\left(\frac{\pi}{6}\right)=\frac{\pi}{12}-\frac{\sqrt{3}}{2} \ln \left(\frac{2}{\sqrt{3} e}\right)$
65. The sum to 10 terms of the series $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots$. is
(1) $\frac{58}{111}$
(2) $\frac{59}{111}$
(3) $\frac{55}{111}$
(4) $\frac{56}{111}$

Answer (3)

Sol. $S=\sum_{r=1}^{10} \frac{r}{1+r^{2}+r^{4}}=\frac{1}{2} \sum\left(\frac{1}{r^{2}-r+1}-\frac{1}{r^{2}+r+1}\right)$
$T_{1}=\frac{1}{2}\left(\frac{1}{1^{2}-1+1}-\frac{1}{1^{2}+1+1}\right)$
$T_{2}=\frac{1}{2}\left(\frac{1}{2^{2}-2+1}-\frac{1}{2^{2}+2+1}\right)$
$T_{3}=\frac{1}{2}\left(\frac{1}{3^{2}-3+1}-\frac{1}{3^{2}+3+1}\right)$
$T_{10}=\frac{1}{2}\left(\frac{1}{10^{2}-10+1}-\frac{1}{10^{2}+10+1}\right)$
$S=\frac{1}{2}\left(1-\frac{1}{111}\right)=\frac{55}{111}$
66. The combined equation of the two lines $a x+b y+c$ $=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ can be written as ($a x+b y$ $+c)\left(a^{\prime} x+b^{\prime} y+c^{\prime}\right)=0$
The equation of the angle bisectors of the lines represented by the equation $2 x^{2}+x y-3 y^{2}=0$ is
(1) $3 x^{2}+5 x y+2 y^{2}=0$
(2) $x^{2}-y^{2}+10 x y=0$
(3) $3 x^{2}+x y+2 y^{2}=0$
(4) $x^{2}-y^{2}-10 x y=0$

Answer (4)
Sol. $\frac{x^{2}-y^{2}}{2-(-3)}=\frac{x y}{\frac{1}{2}}$
OR $x^{2}-y^{2}=10 x y$
67. Let S be the set of all solutions of the equation $\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$.
Then $\sum_{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$ is equal to
(1) $\frac{-2 \pi}{3}$
(2) 0
(3) $\pi-\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\pi-2 \sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$

Answer (*)

Sol. $\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi$
This is possible only when
$\cos ^{-1}(2 x)=\pi$
And $2 \cos ^{-1} \sqrt{1-x^{2}}=0$
From (i)
$x=-\frac{1}{2}$
Which does not satisfy (ii)
So no such x exist
68. The value of
$\frac{1}{1!50!}+\frac{1}{3!48!}+\frac{1}{5!46!}+\ldots .+\frac{1}{49!2!}+\frac{1}{5!1!}$ is :
(1) $\frac{2^{50}}{51!}$
(2) $\frac{2^{51}}{51!}$
(3) $\frac{2^{50}}{50!}$
(4) $\frac{2^{51}}{50!}$

Answer (1)

Sol. $\frac{1}{(51)!}\left({ }^{51} C_{1}+{ }^{51} C_{3}+\ldots+{ }^{51} C_{51}\right)$
$=\frac{2^{50}}{(51)!}$
69. Let S denote the set of all real values of λ such that the system of equations
$\lambda x+y+z=1$
$x+\lambda y+z=1$
$x+y+\lambda z=1$
is inconsistent, then $\sum_{\lambda \in S}\left(|\lambda|^{2}+|\lambda|\right)$ is equal to
(1) 4
(2) 2
(3) 6
(4) 12

Answer (3)
Sol. $\left|\begin{array}{lll}\lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda\end{array}\right|=0$
$\lambda\left(\lambda^{2}-1\right)-1(\lambda-1)+1(1-\lambda)=0$
$\lambda^{3}-\lambda-\lambda+1+1-\lambda=0$
$\lambda^{3}-3 \lambda+2=0$
$(\lambda-1)\left(\lambda^{2}+\lambda-2\right)=0$

$$
\lambda=1,-2
$$

For $\lambda=1 \Rightarrow \infty$ solution
$\lambda=-2 \Rightarrow$ no solution
$\sum_{\lambda \in S}|\lambda|^{2}+|\lambda|=6$
70. For a triangle $A B C$, the value of $\cos 2 A+\cos 2 B+$ $\cos 2 C$ is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct?
(1) $\overrightarrow{M A} \cdot \overrightarrow{M B}=-18$
(2) perimeter of $\triangle A B C$ is $18 \sqrt{3}$
(3) area of $\triangle A B C$ is $\frac{27 \sqrt{3}}{2}$
(4) $\sin 2 A+\sin 2 B+\sin 2 C=\sin A+\sin B+\sin C$

Answer (3)

Sol. We know that
$\cos 2 A+\cos 2 B+\cos 2 C \geq \frac{-3}{2} \quad$ where equality holds for equilateral triangle
$r=\frac{\Delta}{s}=\frac{\frac{\sqrt{3}}{4} a^{2}}{\frac{3}{2} a}=\frac{a}{2 \sqrt{3}}$
$a=2 \sqrt{3} r=6 \sqrt{3}$
Area $=\frac{\sqrt{3}}{4} a^{2}=27 \sqrt{3}$
71. Let $f(x)=\left|\begin{array}{ccc}1+\sin ^{2} x & \cos ^{2} x & \sin 2 x \\ \sin ^{2} x & 1+\cos ^{2} x & \sin 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+\sin 2 x\end{array}\right|$,
$x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$. If α and β respectively are the maximum and the minimum values of f, then
(1) $\beta^{2}+2 \sqrt{\alpha}=\frac{19}{4}$
(2) $\alpha^{2}+\beta^{2}=\frac{9}{2}$
(3) $\alpha^{2}-\beta^{2}=4 \sqrt{3}$
(4) $\beta^{2}-2 \sqrt{\alpha}=\frac{19}{4}$

Answer (4)

Sol. $C_{1} \rightarrow=C_{1}+C_{2}+C_{3}$
$(2+\sin 2 x)\left|\begin{array}{ccc}1 & \cos ^{2} x & \sin 2 x \\ 1 & 1+\cos ^{2} x & \sin 2 x \\ 1 & \cos ^{2} x & 1+\sin 2 x\end{array}\right|$
$R_{2} \rightarrow R_{2} \rightarrow R_{1} ; R_{3} \rightarrow R_{3} \rightarrow R_{1}$
$(2+\sin 2 x)\left|\begin{array}{ccc}1 & \cos ^{2} x & \sin 2 x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
$f(x)=2+\sin 2 x ; x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
$f(x)_{\text {max }}=2+1=3$ for $x=\frac{\pi}{4}$
$f(x)_{\min }=2+\frac{\sqrt{3}}{2}$ for $x=\frac{\pi}{6}, \frac{\pi}{3}$
$\beta^{2}-2 \sqrt{\alpha}=4+\frac{3}{4}+2 \sqrt{3}-2 \sqrt{3}$
$=\frac{19}{4}$
72. The area enclosed by the closed curve C given by the differential equation $\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$ is 4π.
Let P and Q be the points of intersection of the curve C and the y-axis. If normals at P and Q on the curve C intersect x-axis at points R and S respectively, then the length of the line segment $R S$ is
(1) 2
(2) $\frac{2 \sqrt{3}}{3}$
(3) $2 \sqrt{3}$
(4) $\frac{4 \sqrt{3}}{3}$

Answer (4)

Sol. $\frac{d y}{d x}+\frac{x+a}{y-2}=0$
$(y-2) d y+(x+a) d x=0$
Integrating
$\frac{y^{2}}{2}-2 y+\frac{x^{2}}{2}+a x=C$
Or $x^{2}+2 a x+y^{2}-4 y=C$
At $x=1, y=0$
$1+2 a=C$
Equation of circle
$x^{2}+2 a x+y^{2}-4 y=1+2 a$
$x^{2}+y^{2}+2 a x-4 y-(1+2 a)=0$
$r=\sqrt{a^{2}+4+1+2 a}=2$
$a^{2}+2 a+5=4 \Rightarrow a=-1$
Curve is $x^{2}+y^{2}-2 x-4 y+1=0$
Intersection with y-axis

$$
P=(0,2+\sqrt{3}) \quad Q \equiv(0,2-\sqrt{3})
$$

For normal at $P \& Q$
$R=\left(1+\frac{2}{\sqrt{3}}, 0\right), S=\left(1-\frac{2}{\sqrt{3}}, 0\right)$
$R S=\frac{4 \sqrt{3}}{3}$
73. Let $f(x)=2 x+\tan ^{-1} x$ and
$g(x)=\log _{e}\left(\sqrt{1+x^{2}}+x\right), x \in[0,3]$. Then
(1) $\min f(x)=1+\max g^{\prime}(x)$
(2) there exist $0<x_{1}<x_{2}<3$ such that $f(x)<g(x)$, $\forall x \in\left(x_{1}, x_{2}\right)$
(3) there exists $\hat{x} \in[0,3]$ such that $f^{\prime}(\hat{x})<g^{\prime}(\hat{x})$ (4) $\max f(x)>\max g(x)$

Answer (4)

Sol. $f^{\prime}(x)=2+\frac{1}{1+x^{2}}, g^{\prime}(x)=\frac{1}{\sqrt{x^{2}+1}}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}}<0 \\
& g^{\prime \prime}(x)=-\frac{1}{2}\left(x^{2}+1\right)^{-3 / 2} \cdot 2 x<0 \\
& \left.f^{\prime}(x)\right|_{\min }=f^{\prime}(3)=2+\frac{1}{10}=\frac{21}{10} \\
& \left.g^{\prime}(x)\right|_{\max }=g^{\prime}(0)=1 \\
& \left.f^{\prime}(x)\right|_{\max }=f(3)=2+\tan ^{-1} 3 \\
& \left.g(x)\right|_{\max }=g(3)=\ln (3+\sqrt{10})<\ln <7<2
\end{aligned}
$$

74. In a binomial distribution $B(n, p)$, the sum and the product of the mean and the variance are 5 and 6 respectively, then $6(n+p-q)$ is equal to
(1) 52
(2) 50
(3) 53
(4) 51

Answer (1)

Sol. $n p+n p q=5$
$n p(1+q)=5$
$n p(n p q)=6$

$$
\begin{align*}
& \Rightarrow \quad n p=3, n p q=2 \tag{ii}\\
& \Rightarrow \quad q=\frac{2}{3}, p=\frac{1}{3}, n=9 \\
& 6(n+p-q)=6\left(9+\frac{1}{3}-\frac{2}{3}\right)=6\left(9-\frac{1}{3}\right) \\
& =52
\end{align*}
$$

75. The shortest distance between the lines $\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}$ and $\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}$ is
(1) $5 \sqrt{3}$
(2) $6 \sqrt{3}$
(3) $4 \sqrt{3}$
(4) $7 \sqrt{3}$

Answer (2)

Sol. $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 1 & 4 & -5\end{array}\right|=\hat{i}(2)-\hat{j}(-2)+\hat{k}(2)$

$$
\begin{aligned}
& \therefore \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\hat{i}+\hat{j}+\hat{k} \\
& \overrightarrow{a_{1}}-\overrightarrow{a_{2}}=8 \hat{i}+7 \hat{j}+3 \hat{k} \\
& d=\left|\frac{\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|=\left|\frac{8+7+3}{\sqrt{3}}\right|=\frac{18}{\sqrt{3}}=6 \sqrt{3}
\end{aligned}
$$

76. $\lim _{n \rightarrow \infty}\left[\frac{1}{1+n}+\frac{1}{2+n}+\frac{1}{3+n}+\ldots+\frac{1}{2 n}\right]$ is equal to
(1) 0
(2) $\log _{e}\left(\frac{3}{2}\right)$
(3) $\log _{e} 2$
(4) $\log _{e}\left(\frac{2}{3}\right)$

Answer (3)

Sol. $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2} \cdots \cdot \frac{1}{n+n}\right)$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n}\left(\frac{1}{1+\left(\frac{r}{n}\right)}\right) \\
& =\int_{0}^{1} \frac{d x}{1+x}=\log (1+x)_{0}^{1}=\log 2
\end{aligned}
$$

77. Let R be a relation on \mathbb{R}, given by
$R=\{(a, b): 3 a-3 b+\sqrt{7}$ is an irrational number $\}$.
Then R is
(1) reflexive but neither symmetric nor transitive
(2) an equivalence relation
(3) reflexive and symmetric but not transitive
(4) reflexive and transitive but not symmetric

Answer (1)
Sol. For reflexive:
$3 a-3 a+\sqrt{7}$ is an irrational number $\forall a \in R R$ is reflexive
For symmetric
Let $3 a-3 b+\sqrt{7}$ is an irrational number
$\Rightarrow 3 b-3 a+\sqrt{7}$ is an irrational number
For e.g., Let $3 a-3 b=\sqrt{7}$
$\sqrt{7}+\sqrt{7}$ is irrational but $-\sqrt{7}+\sqrt{7}$ is not.
$\therefore \quad R$ is not symmetric
For transitive:
Let $3 a-3 b+\sqrt{7}$ is irrational and $3 b-3 c+\sqrt{7}$ is irrational
$\Rightarrow 3 a-3 c+\sqrt{7}$ is irrational
For e.g., take $a=0, b=-\sqrt{7}, c=\frac{\sqrt{7}}{3}$
R is not transitive
78. The negation of the expression $q \vee((\sim q) \wedge p)$ is equivalent to
(1) $p \wedge(\sim q)$
(2) $(\sim p) \vee(\sim q)$
(3) $(\sim p) \vee q$
(4) $(\sim p) \wedge(\sim q)$

Answer (4)

Sol. $q \vee(\sim q \wedge p)$
$\Rightarrow(q \vee \sim q) \wedge(q \vee p)$
$\Rightarrow \quad T \wedge(q \vee p)$
$\Rightarrow q \vee p$
Now,
$\sim(q \vee p)$
$=\sim q \wedge \sim p$
79. Let $S=\left\{\begin{aligned} & x: x \in \mathbb{R} \text { and }(\sqrt{3}+\sqrt{2})^{x^{2}-4} \\ &+(\sqrt{3}-\sqrt{2})^{x^{2}-4}=10\end{aligned}\right\}$.

Then $n(S)$ is equal to
(1) 2
(2) 4
(3) 0
(4) 6

Answer (4)
Sol. Let $(\sqrt{3}+\sqrt{2})^{x^{2}-4}=t$

$$
\begin{aligned}
& t+\frac{1}{t}=10 \\
\Rightarrow & t-10 t+1=0 \\
\Rightarrow & t=\frac{10 \pm \sqrt{100-4}}{2}=5 \pm 2 \sqrt{6}
\end{aligned}
$$

Case-I

$$
\begin{aligned}
& t=5+2 \sqrt{6} \\
\Rightarrow & (\sqrt{3}+\sqrt{2})^{x^{2}-4}=(\sqrt{3}+\sqrt{2})^{2} \\
\Rightarrow & x^{2}-4=2 \Rightarrow x^{2}=6 \Rightarrow x= \pm \sqrt{6}
\end{aligned}
$$

Case-II

$$
t=5-2 \sqrt{6}
$$

$$
(\sqrt{3}+\sqrt{2})^{x^{2}-4}=(\sqrt{3}-\sqrt{2})^{2}
$$

$$
\Rightarrow\left((\sqrt{3}-\sqrt{2})^{-1}\right)^{x^{2}-4}=(\sqrt{3}-\sqrt{2})^{2}
$$

$$
\Rightarrow 4-x^{2}=2
$$

$$
\Rightarrow x^{2}=2
$$

$$
\Rightarrow \quad x= \pm \sqrt{2}
$$

80. Let the image of the point $P(2,-1,3)$ in the plane $x+2 y-z=0$ be Q. Then the distance of the plane $3 x+2 y+z+29=0$ from the point Q is
(1) $2 \sqrt{14}$
(2) $\frac{22 \sqrt{2}}{7}$
(3) $\frac{24 \sqrt{2}}{7}$
(4) $3 \sqrt{14}$

Answer (4)

Sol. $P(2,-1,3) \quad$ Plane: $x+2 y-z=0$
Let $Q(\alpha, \beta \gamma)$
Then,

$$
\frac{\alpha-2}{1}=\frac{\beta+1}{2}=\frac{\gamma-3}{-1}=\frac{-2(-3)}{6}
$$

$\therefore \alpha=3, \beta=1, \gamma=2$
Now distance of Q from the plane $3 x+2 y+z+29$ $=0$

$$
\left(d=\frac{9+2+2+29}{\sqrt{14}}=\frac{42}{\sqrt{14}}=3 \sqrt{14}\right)
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
81. Let $a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is \qquad .

Answer (754)

Sol. Given, $a_{1}=8, a_{2}, a_{3} \ldots a_{n}$ are in A.P.
Now $2(16+3 d)=50$
$3 \mathrm{~d}=9 \Rightarrow d=3$
Now $2\left(2 a_{n}-9\right)=170$
$a_{n}=47$
$8+(n-1) 3=47$

$$
n=14
$$

Product of middle two terms $=a_{7} \times a_{8}$
$=(8+18)(8+21)$
$=26 \times 29$
$=754$
82. If $\int_{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{\frac{1}{7}} d x=\frac{1}{l}(11)^{\frac{m}{n}}$ where $I, m, n \in \mathbb{N}, m$ and n are coprime then $I+m$ $+n$ is equal to \qquad .

Answer (63)

Sol. $I=\int_{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x$
$I=\int_{0}^{1}\left(x^{20}+x^{13}+x^{6}\right)\left(2 x^{21}+3 x^{14}+6 x^{7}\right)^{1 / 7} d x$
Let $2 x^{21}+3 x^{14}+6 x^{7}=t$
$\Rightarrow 42\left(x^{20}+x^{13}+x^{6}\right) d x=d t$
$I=\frac{1}{42} \int_{0}^{11} t^{1 / 7} d t=\frac{1}{42} \frac{7}{8}\left[t^{8 / 7}\right]_{0}^{11}$
$=\frac{1}{48} 11^{817}$
$\therefore \quad I=48, m=8, n=7$
$\therefore \quad l+m+n=63$
83. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that
$f^{\prime}(x)+f(x)=\int_{0}^{2} f(t) d t$. If $f(0)=\mathrm{e}^{-2}$, then $2 f(0)-f(2)$ is equal to
Answer (01)
Sol. $f(x)+f(x)=k$

$$
\begin{aligned}
& \Rightarrow e^{x} f(x)=k e^{x}+c \\
& f(x)=k+c e^{-x} \\
& k=\int_{0}^{2}\left(k+c e^{-t}\right) d t \\
& k=2 k+\left.c \cdot \frac{e^{-t}}{-1}\right|_{0} ^{2} \\
& k=2 k+c\left(\frac{e^{-2}}{-1}+1\right) \\
& -k=c\left(1-\frac{1}{e^{2}}\right) \\
& f(x)=c e^{-x}-c\left(1-\frac{1}{e^{2}}\right) \\
& f(0)=c-c+\frac{c}{e^{2}}=\frac{1}{e^{2}} \Rightarrow c=1 \\
& f(2)=e^{-2}-r\left(1-e^{-2}\right) \\
& =2 e^{-2}-1 \\
& 2 f(0)-f(2)=1
\end{aligned}
$$

84. If $f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$ and $g(x)=f(1) x^{2}+x f(x)$
$+f^{\prime}(x)$, then the value of $f(4)-g(4)$ is equal to
\qquad -.

Answer (14)

Sol. Let $g^{\prime}(1)=a$ and $g^{\prime \prime}(2)=b$
$\Rightarrow f(x)=x^{2}+a x+b$
Now, $f(1)=1+a+b ; f^{\prime}(x)=2 x+a ; f^{\prime \prime}(x)=2$
$g(x)=(1+a+b) x^{2}+x(2 x+a)+2$
$\Rightarrow g(x)=(a+b+3) x^{2}+a x+2$
$\Rightarrow g^{\prime}(x)=2 x(a+b+3)+a \Rightarrow g^{\prime}(1)=2(a+b+3)$
$+a=a$
$\Rightarrow a+b+3=0$
$g^{\prime \prime}(x)=2(a+b+3)=b$
$\Rightarrow 2 a+b+6=0$
Solving (i) and (ii), we get
$a=-3$ and $b=0$
$f(x)=x^{2}-3 x$ and $g(x)=-3 x+2$
$f(4)=4$ and $g(4)=-12+2=-10$
$\Rightarrow f(4)-g(4)=16-2=14$
85. The number of 3 -digit numbers, that are divisible by either 2 or 3 but not divisible by 7 , is \qquad

Answer (514)

$A=$ Numbers divisible by 2
$B=$ Numbers divisible by 3
$C=$ Numbers divisible by 7
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=n(2)+n(3)-n(6)$
$n(A)=n(2)=100,102 \ldots, 998,=450$
$n(\mathrm{~B})=n(3)=102,105, \ldots . ., 999=30$
$n(A \cap B)=n(6)=102,108, \ldots \ldots, 996=150$
$n(2$ or 3$)=450+300-150=600$
Now,
$n(\mathrm{~A} \cap C)=n(14)=112,126, \ldots \ldots, 994=64$
$n(\mathrm{~A} \cap B \cap C)=n(42)=126,168, \ldots . ., 966=21$
$n(B \cap C)=n(21)=105,126, \ldots \ldots ., 987,=43$
$n(2$ or 3 not by 7$)=600-[64+43-21]$
$=514$
86. The remainder, when $19^{200}+23^{200}$ is divided by 49 , is \qquad

Answer (29)

Sol. $19^{200}+23^{200}$
$(21-2)^{200}+(21+2)^{200}=49 \lambda+2^{201}$
$2^{201}=8^{67}=(7+1)^{67}=49 \lambda+7 \times 67+1$
$=49 \lambda+470$
$=49(\lambda+9)+29$
Remainder $=29$
87. $A(2,6,2), B(-4,0, \lambda), C(2,3,-1)$ and $D(4,5,0)$, $|\lambda| \leq 5$ are the vertices of a quadrilateral $A B C D$. If its area is 18 square units, then $5-6 \lambda$ is equal to
\qquad -.
Answer (11)
Sol.

$$
D(4,5,0)
$$

$$
\vec{d}_{1}=3 \hat{j}+3 \hat{k}
$$

$$
d_{2}=8 \hat{i}+5 \hat{j}-\lambda \hat{k}
$$

$$
\dot{d}_{1} \times d_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
0 & 3 & 3 \\
8 & 5 & -\lambda
\end{array}\right|
$$

$$
=(-3 \lambda-15) \hat{i}+24 \hat{j}-24 \hat{k}
$$

$$
\frac{1}{2}\left|\vec{d}_{1} \times \vec{d}_{2}\right|=18
$$

$$
\sqrt{(3 \lambda+15)^{2}+24^{2}+24^{2}}=36
$$

$$
(3 \lambda+15)^{2}=1296-1152
$$

$3 \lambda+15= \pm 12$

$3 \lambda=-3$	$3 \lambda+15=-12$
$\lambda=-1$	$\lambda=-\frac{27}{3}$
	$\lambda=-9$

$\because \quad \lambda \in[-5,5]$
$\therefore \quad \lambda=-1$
$5-6(-1)=11$
90. Let $\vec{v}=a \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$ and \vec{u} be a
$\therefore \quad 12 A=62$
89. The number of words, with or without meaning, that can be formed using all the letters of word ASSASSINATION so that vowels occur together, is

Answer (50400)

Sol.

Number of arrangements $=\frac{8!}{4!2!} \times \frac{6!}{3!2!}=50400$
vector such that $|\vec{u}|=\alpha>0$. If the minimum value of the scalar triple product $[\vec{u} \vec{v} \vec{w}]$ is $-\alpha \sqrt{3401}$, and $|\vec{u} \cdot \hat{i}|^{2}=\frac{m}{n}$ where m and n are coprime natural numbers, then $m+n$ is equal to \qquad .

Answer (3501)

Sol. $\vec{v} \times \vec{w}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 2 \alpha & 1 & -1\end{array}\right|=\hat{i}-5 \alpha \hat{j}-3 \alpha \hat{k}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\vec{u} \vec{v} & \vec{w}
\end{array}\right]=\vec{u} \cdot(\vec{v} \times \vec{w})} \\
& =|\vec{u}||\vec{v} \times \vec{w}| \times \cos \theta \\
& =\alpha \sqrt{34 \alpha^{2}+1} \cos \theta \\
& {[\vec{u} \vec{v} \vec{w}]_{\min }=-\alpha \sqrt{3401}} \\
& \alpha \sqrt{34 \alpha^{2}+1} \times(-1)=-\alpha \sqrt{3401}
\end{aligned}
$$

(taking $\cos \theta=1$)
$\Rightarrow \alpha=10$
$\vec{v} \times \vec{w}=\hat{i}-50 \hat{j}-30 \hat{k}$
$\cos \theta=-1 \Rightarrow \vec{u}$ is antiparallel to $\vec{v} \times \vec{w}$
$\vec{u}=-|\vec{u}| \cdot \frac{\vec{v} \times \vec{W}}{|\vec{v} \times \vec{W}|}=\frac{-10(\hat{i}-50 \hat{j}-30 \hat{k})}{\sqrt{3401}}$
$|\vec{u} \cdot \hat{i}|^{2}=\left|\frac{-10}{\sqrt{3401}}\right|^{2}=\frac{100}{3401}=\frac{m}{n}$
$m+n=3501$

