MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Let $[x]$ denote the greatest integer $\leq x$. Consider the function $f(x)=\max \left\{x^{2}, 1+[x]\right\}$. Then the value of the integral $\int_{0}^{2} f(x) d x$ is
(1) $\frac{1+5 \sqrt{2}}{3}$
(2) $\frac{5+4 \sqrt{2}}{3}$
(3) $\frac{8+4 \sqrt{2}}{3}$
(4) $\frac{4+5 \sqrt{2}}{3}$

Answer (2)

Sol.

$$
\therefore f(x)=1 \quad x \in[0,1)
$$

$$
\begin{aligned}
& 2 x \in[1, \sqrt{2}) \\
& x^{2} \quad x \in[\sqrt{2}, 2]
\end{aligned}
$$

$$
\therefore \int_{0}^{2} f(x) d x=\int_{0}^{1} 1 d x+\int_{1}^{\sqrt{2}} 2 d x+\int_{\sqrt{2}}^{2} x^{2} d x
$$

$$
=1+2 \sqrt{2}-2+\left.\frac{x^{3}}{3}\right|_{\sqrt{2}} ^{2}
$$

$$
=2 \sqrt{2}-1+\frac{8}{3}-\frac{2 \sqrt{2}}{3}
$$

$$
=\frac{5+4 \sqrt{2}}{3}
$$

62. Let the tangents at the points $A(4,-11)$ and $B(8,-5)$ on the circle $x^{2}+y^{2}-3 x+10 y-15=0$, intersect at the point C. Then the radius of the circle, whose centre is C and the line joining A and B is its tangent, is equal to
(1) $\sqrt{13}$
(2) $\frac{3 \sqrt{3}}{4}$
(3) $\frac{2 \sqrt{13}}{3}$
(4) $2 \sqrt{13}$

Answer (3)

Sol.

$O A=O B=\frac{13}{2}$
$\because \quad A B=2 \sqrt{13}$ then $A M=\sqrt{13}$
In $\triangle A M O: \angle O A M=\theta=\angle A C O$
$\therefore \quad O C=\frac{13}{2 \sin \theta}$
$\because \quad \sin \theta=\frac{3 \sqrt{13}}{13}=\frac{3}{\sqrt{13}}$
$\therefore \quad O C=\frac{13 \sqrt{13}}{6}$
and $O M=\frac{3 \sqrt{13}}{2}$
$\therefore \quad C M=O C-O M=\frac{2 \sqrt{13}}{3}$
63. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0,2 x \leq y \leq \sqrt{4-(x-1)^{2}}\right\}$ and
$B=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: 0 \leq y \leq \min \left\{2 x, \sqrt{4-(x-1)^{2}}\right\}\right\}$.
Then the ratio of the area of A to the area of B is
(1) $\frac{\pi}{\pi-1}$
(2) $\frac{\pi+1}{\pi-1}$
(3) $\frac{\pi-1}{\pi+1}$
(4) $\frac{\pi}{\pi+1}$

Answer (3)

Sol. For A :

For B :

Area $(A)+\operatorname{Area}(B)=2 \pi$
Area $B=\int_{0}^{1} 2 x d x+\int_{1}^{3} \sqrt{4-(x-1)^{2}} d x$

$$
=1+\frac{\pi 4}{4}=\pi+1
$$

Area $A=\pi-1$
$\therefore \quad$ Required ratio $=\frac{\pi-1}{\pi+1}$
64. Let α and β be real numbers. Consider a 3×3 matrix A such that $A^{2}=3 A+\alpha l$. If $A^{4}=21 A+\beta /$, then
(1) $\alpha=1$
(2) $\alpha=4$
(3) $\beta=8$
(4) $\beta=-8$

Answer (4)

Sol. $A^{4}=A^{2} A^{2}$

$$
\begin{aligned}
& =(3 A+\alpha \Lambda)(3 A+\alpha) \\
& =9 A^{2}+6 \alpha A+\alpha^{2} \\
& =9(3 A+\alpha \Lambda)+6 \alpha A+\alpha^{2} \\
& =(27+6 \alpha) A+\left(9 \alpha+\alpha^{2}\right)=21 A+\beta I \\
\Rightarrow & \alpha=-1, \beta=-8
\end{aligned}
$$

65. Let $f(\theta)=3\left(\sin ^{4}\left(\frac{3 \pi}{2}-\theta\right)+\sin ^{4}(3 \pi+\theta)\right)-2\left(1-\sin ^{2} 2 \theta\right)$ and $S=\left\{\theta \in[0, \pi]: f^{\prime}(\theta)=-\frac{\sqrt{3}}{2}\right\}$. If $4 \beta=\sum_{\theta \in S} \theta$, then $f(\beta)$ is equal to
(1) $\frac{9}{8}$
(2) $\frac{3}{2}$
(3) $\frac{5}{4}$
(4) $\frac{11}{8}$

Answer (3)

Sol. $f(\theta)=3\left(\cos ^{4} \theta+\sin ^{4} \theta\right)-2\left(1-\sin ^{2} 2 \theta\right)$

$$
\begin{aligned}
f(\theta) & =12\left(\cos ^{3} \theta(-\sin \theta)+\sin ^{3} \theta \cos \theta\right)+4 \sin 4 \theta \\
& =12(\cos \theta \sin \theta(-\cos 2 \theta))+4 \sin 4 \theta \\
& =-6 \sin 2 \theta \cos 2 \theta+4 \sin 4 \theta \\
& =-3 \sin 4 \theta+4 \sin 4 \theta \\
& =\sin 4 \theta
\end{aligned}
$$

$$
\sin 4 \theta=-\frac{\sqrt{3}}{2}
$$

$$
4 \theta=\left\{\frac{3 \pi}{2}-\frac{\pi}{3}, \frac{3 \pi}{2}+\frac{\pi}{3}, \frac{7 \pi}{2}-\frac{\pi}{3}, \frac{7 \pi}{2}+\frac{\pi}{3}\right\}
$$

$$
\sum \theta=\frac{5 \pi}{2} \Rightarrow \beta=\frac{5 \pi}{8}
$$

$$
f(\theta)=3\left(1-2 \sin ^{2} \theta+\cos ^{2} \theta\right)-2 \cos ^{2} 2 \theta
$$

$$
=3\left(1-\frac{1}{2} \sin ^{2} \frac{5 \pi}{4}\right)-2 \cos ^{2} \frac{5 \pi}{4}
$$

$$
=3\left(1-\frac{1}{4}\right)-2 \cdot \frac{1}{2}=\frac{5}{4}
$$

66. Consider the following system of equations
$\alpha x+2 y+z=1$
$2 \alpha x+3 y+z=1$
$3 x+a y+2 z=b$
For some $\alpha, \beta \in \mathbb{R}$. then which of the following is NOT correct?
(1) It has no solution if $\alpha=-1$ and $\beta \neq 2$
(2) It has a solution for all $\alpha \neq-1$ and $\beta=2$
(3) It has no solution for $\alpha=3$ and for all $\beta \neq 2$
(4) It has no solution for $\alpha=-1$ and for all $\beta \in \mathbb{R}$.

Answer (3)

Sol. $\left|\begin{array}{ccc}\alpha & 2 & 1 \\ 2 \alpha & 3 & 1 \\ 3 & \alpha & 2\end{array}\right|=0$
$\alpha(6-\alpha)-2(4 \alpha-3)+1\left(2 \alpha^{2}-9\right)=0$
$\Rightarrow 6 \alpha-\alpha^{2}-8 \alpha+6+2 \alpha^{2}-9=0$
$\Rightarrow \alpha^{2}-2 \alpha-3=0$
OR $\alpha=3,-1$
For $\alpha=3, \beta=2 \Rightarrow$ Infinite solution
For $\alpha=-1, \beta=2 \Rightarrow$ Infinite solution
For $\alpha=-1, \beta \neq 2 \Rightarrow$ no solution
67. Let $f(x)=x+\frac{a}{\pi^{2}-4} \sin x+\frac{b}{\pi^{2}-4} \cos x, x \in \mathbb{R}$ be a function which satisfies $f(x)=x+\int_{0}^{\pi / 2} \sin (x+y) f(y) d y$. Then $(a+b)$ is equal to
(1) $-\pi(\pi+2)$
(2) $-\pi(\pi-2)$
(3) $-2 \pi(\pi+2)$
(4) $-2 \pi(\pi-2)$

Answer (3)

Sol. $\because f(x)=x+\frac{a}{x^{2}-4} \sin x+\frac{b}{x^{2}-4} \cos x, x \in R$
And $f(x)=x+\int_{0}^{\pi / 2} \sin (x+y) \cdot f(y) d y$
$\Rightarrow f(x)=x+\left(\int_{0}^{\pi / 2} f(y) \cdot \cos y d y\right) \sin x$

$$
+\left(\int_{0}^{\pi / 2} f(y) \sin y d y\right) \cos x
$$

$\therefore \quad \frac{a}{\pi^{2}-4}=\int_{0}^{\pi / 2} \cos y\left(y+\frac{a}{\pi^{2}-4} \sin y+\frac{b}{\pi^{2}-4} \cos y\right) d y$

$$
\begin{align*}
& \frac{a}{\pi^{2}-4}=\frac{\pi}{2}-1+\frac{a}{2\left(\pi^{2}-4\right)}+\frac{b \pi}{4\left(\pi^{2}-4\right)} \\
\therefore \quad & 2 a-b \pi=2(\pi+2)(\pi-2)^{2} \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

and $\frac{b}{\pi^{2}-4}=\int_{0}^{\pi / 2}\left(y+\frac{a}{\pi^{2}-4} \sin y+\frac{b}{\pi^{2}-4} \cos y\right) \sin y d y$

$$
\begin{equation*}
\frac{b}{\pi^{2}-4}=1+\frac{a \pi}{4\left(\pi^{2}-4\right)}+\frac{b}{2\left(\pi^{2}-4\right)} \tag{ii}
\end{equation*}
$$

$\therefore \quad a \pi-2 b=-4\left(\pi^{2}-4\right)$
Equation (i) - equation (ii)
$(2-\pi)(a+b)=2\left(\pi^{2}-4\right)(\pi-2+2)$
$\therefore \quad a+b=-2 \pi(\pi+2)$
68. Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct Tshirt is
(1) $\frac{1}{6}$
(2) $\frac{5}{36}$
(3) $\frac{2}{15}$
(4) $\frac{5}{24}$

Answer (*)

69. If p, q and r are three propositions, then which of the following combination of truth values of p, q and r makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?
(1) $p=F, q=T, r=F$
(2) $p=T, q=F, r=T$
(3) $p=T, q=T, r=F$
(4) $p=T, q=F, r=F$

Answer (1)

Sol. $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$
Is false when
$\{(p \vee q) \wedge((\sim p) \vee r)\} \top$ and $\sim q \vee r=F$
So, $(p \vee q)=\mathrm{T}$ and $\sim p \vee r=T$ and
$\sim q=F$ and $r=F$
So, $q=T, r=F$, and $\sim p=T$
$\therefore \quad p=F$
$\therefore \quad p=F, q=T, r=F$
70. Let $x=2$ be a root of the equation $x^{2}+p x+q=0$ and
$f(x)-\left\{\begin{array}{cc}\frac{1-\cos \left(x^{2}-4 p x+q^{2}+8 q+16\right)}{(x-2 p)^{4}} & , x \neq 2 p \\ 0, & , x=2 p\end{array}\right.$
Then $\lim _{x \rightarrow 2 p^{+}}[f(x)]$,
where [•] denotes greatest integer function, is
(1) 1
(2) 2
(3) 0
(4) -1

Answer (3)
Sol. $4+2 p+q=0$
\ldots (i) $\Rightarrow 4 p^{2}=q^{2}+8 q+16$
For $\lim _{x \rightarrow 2 p^{+}} f(x)$ put $x=2 p+h$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\left(1-\cos \left((2 p+h)^{2}-4 p(2 p+h)+q^{2}+8 q+16\right)\right)}{h^{4}}$
$\Rightarrow \lim _{h \rightarrow 0}\left(\frac{1-\cos \left(h^{2}-4 p^{2}+q^{2}+8 q+16\right)}{h^{4}}\right)$
$\Rightarrow \lim _{h \rightarrow 0} \frac{1-\cos h^{2}}{h^{4}}=\frac{1}{2}$
$\therefore\left[\lim _{x \rightarrow 2 p^{+}} f(x)\right]=0$
71. Let B and C be the two points on the line $y+x=0$ such that B and C are symmetric with respect to the origin. Suppose A is a point on $y-2 x=2$ such that $\triangle A B C$ is an equilateral triangle. Then, the area of the $\triangle A B C$ is
(1) $3 \sqrt{3}$
(2) $2 \sqrt{3}$
(3) $\frac{10}{\sqrt{3}}$
(4) $\frac{8}{\sqrt{3}}$

Answer (4)

Sol. Origin (O) is mid-point of $B C(x+y=0)$.
A lies on perpendicular bisector of BC , which is $x-y=0$
A is point of intersection of $x-y=0$ and $y-2 x=2$
$\therefore \quad A \equiv(-2,-2)$

$$
\begin{aligned}
& \text { Let } h=A O=\frac{-2-2}{\sqrt{1^{2}+1^{2}}}=2 \sqrt{2} \\
& \text { Area }=\frac{h^{2}}{\sqrt{3}}=\frac{8}{\sqrt{3}}
\end{aligned}
$$

72. If the vectors $\vec{a}=\lambda \hat{i}+\mu \hat{j}+4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}+3 \hat{j}+\hat{k}$ are coplanar and the projection of \vec{a} on the vector \vec{b} is $\sqrt{54}$ units, then the sum of all possible values of $\lambda+\mu$ is equal to
(1) 24
(2) 0
(3) 6
(4) 18

Answer (1)
Sol. $\vec{a}=\lambda \hat{i}+\mu \hat{j}+4 \hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}-2 \hat{k}, \vec{c}=2 \hat{i}+3 \hat{j}+\hat{k}$
Now, $\vec{a} \cdot \vec{b}=\sqrt{54} \Rightarrow \frac{-2 \lambda+4 \mu-8}{\sqrt{24}}=\sqrt{54}$
$\Rightarrow-2 \lambda+4 \mu-8=36$
$\Rightarrow 2 \mu-\lambda=22$
and $\left|\begin{array}{ccc}\lambda & \mu & 4 \\ -2 & 4 & -2 \\ 2 & 3 & 1\end{array}\right|=0$
$10 \lambda-2 \mu-56=0$
By (i) \& (ii) $\lambda=\frac{78}{9}, \mu=\frac{138}{9}$
$\therefore \quad \mu+\lambda=24$
73. A light ray emits from the origin making an angle 30° with the positive x-axis. After getting reflected by the line $x+y=1$, if this ray intersects x-axis at Q, then the abscissa of Q is
(1) $\frac{2}{3-\sqrt{3}}$
(2) $\frac{2}{3+\sqrt{3}}$
(3) $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$
(4) $\frac{2}{(\sqrt{3}-1)}$

Answer (2)

Sol.

Let $Q(h, O)$
$\because \quad O P$ reflected by $x+y=1$.

So, image of Q lies on $y=\frac{x}{\sqrt{3}}$
$\therefore \quad \frac{x-h}{1}=\frac{y}{1}=\frac{-2(h-1)}{2}$
$\therefore \quad x=1, y=1-h$
It lies on $y=\frac{x}{\sqrt{3}}$
$\therefore \quad 1-h=\frac{1}{\sqrt{3}}$
$\therefore \quad h=1-\frac{1}{\sqrt{3}}=\frac{\sqrt{3}-1}{\sqrt{3}}=\frac{2}{3+\sqrt{3}}$
Option (2) is correct.
74. Let Δ be the area of the region
$\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 21, y^{2} \leq 4 x, x \geq 1\right\}$. Then $\frac{1}{2}\left(\Delta-21 \sin ^{-1} \frac{2}{\sqrt{7}}\right)$ is equal to
(1) $\sqrt{3}-\frac{4}{3}$
(2) $2 \sqrt{3}-\frac{1}{3}$
(3) $\sqrt{3}-\frac{2}{3}$
(4) $2 \sqrt{3}-\frac{2}{3}$

Answer (1)

Sol.

$$
\begin{aligned}
& \text { Required area }=2 \int_{1}^{3} 2 \sqrt{x} d x+\int_{3}^{\sqrt{21}} \sqrt{\left(21-x^{2}\right)} d x \\
& =2\left(\left[\left.2\left(\frac{x^{3 / 2}}{3 / 2}\right)\right|_{1} ^{3}\right]+\left[\frac{x}{2} \sqrt{21-x^{2}}+\frac{21}{2} \sin ^{-1}\left(\frac{x}{\sqrt{21}}\right)\right]_{3}^{\sqrt{21}}\right) \\
& =2 \sqrt{3}+\frac{21 \pi}{2}-\frac{8}{3}-21 \sin ^{-1} \sqrt{\frac{3}{7}}=\Delta \\
& \therefore \frac{1}{2}\left(\Delta-21 \sin ^{-1}\left(\frac{2}{\sqrt{7}}\right)\right)=\frac{\sqrt{3}-4}{3}
\end{aligned}
$$

Option (1) is correct.
75. The domain of $f(x)=\frac{\log _{(x+1)}(x-2)}{e^{2 \log _{e} x}-(2 x+3)}, x \in \mathbb{R}$ is
(1) $\mathbb{R}-\{-1,3\}$
(2) $(-1, \infty)-\{3\}$
(3) $\mathbb{R}-\{3\}$
(4) $(2, \infty)-\{3\}$

Answer (4)
Sol. $f(x)=\frac{\log _{x+1}(x-2)}{e^{2 \ln x}-(2 x+3)}$
(i) $x-2>0 \Rightarrow x>2$
(ii) $x+1>0 \Rightarrow x>-1$ and $x \neq-1$
(iii) $x>0$
(iv) $x^{2}-2 x-3 \neq 0$

$$
\begin{aligned}
& \Rightarrow \quad(x-3)(x+1) \neq 0 \\
& \Rightarrow \quad x \neq-1,3
\end{aligned}
$$

(i) \cap (ii) \cap (iii) \cap (iv)
$x \in(2, \infty)-\{3\}$
76. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x)=\frac{x^{2}+2 x+1}{x^{2}+1}$. Then
(1) $f(x)$ is many-one in $(-\infty,-1)$
(2) $f(x)$ is one-one in $[1, \infty)$ but not in $(-\infty, \infty)$
(3) $f(x)$ is many-one in $(1, \infty)$
(4) $f(x)$ is one-one in $(-\infty, \infty)$

Answer (2)
Sol. $f(x)=\frac{x^{2}+2 x+1}{x^{2}+1}$, where $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
=\frac{(x+1)^{2}}{x^{2}+1} \geq 0
$$

$f^{\prime}(x)=\frac{\left(x^{2}+1\right)(2 x+2)-\left(x^{2}-2 x+1\right)(2 x)}{\left(x^{2}+1\right)^{2}}$
$=\frac{2(x+1)\left(x^{2}+1\right)-(x+1)^{2}(2 x)}{\left(x^{2}+1\right)^{2}}$
$\Rightarrow 2(x+1)\left(x^{2}+1-(x+1) x\right)=0$
$\Rightarrow 2(x+1)(x-1)=0$
$\Rightarrow \quad x=1,-1 \Rightarrow$ points of minima and maxima
77. Let $y=f(x)$ be the solution of the differential equation $y(x+1) d x-x^{2} d y=0, y(1)=e$. Then $\lim _{x \rightarrow 0} f(x)$ is equal to
(1) $\frac{1}{e}$
(2) 0
(3) $\frac{1}{e^{2}}$
(4) e^{2}

Answer (2)

Sol. $y(x+1) d x=x^{2} d y$
$\Rightarrow\left(\frac{x+1}{x^{2}}\right) d x=\frac{d y}{y}$
$\Rightarrow \ln x-\frac{1}{x}=\ln y+c$
$x=1, y=e$
$\Rightarrow c=-2$
$\Rightarrow \quad \ln y=\ln x-\frac{1}{x}+2$

$$
y=x e^{2-\frac{1}{x}}
$$

$\lim _{x \rightarrow 0^{+}} y=0 \times e^{-\infty}=0$
78. For two non-zero complex numbers z_{1} and z_{2}, if $\operatorname{Re}\left(z_{1} z_{2}\right)=0$ and $\operatorname{Re}\left(z_{1}+z_{2}\right)$, then which of the following are possible?
A. $\operatorname{Im}\left(z_{1}\right)>0$ and $\operatorname{Im}\left(z_{2}\right)>0$
B. $\operatorname{Im}\left(z_{1}\right)<0$ and $\operatorname{Im}\left(z_{2}\right)>0$
C. $\operatorname{Im}\left(z_{1}\right)>0$ and $\operatorname{Im}\left(z_{2}\right)<0$
D. $\operatorname{Im}\left(z_{1}\right)<0$ and $\operatorname{Im}\left(z_{2}\right)<0$

Choose the correct answer from the options given below
(1) B and C
(2) B and D
(3) A and B
(4) A and C

Sol. Let $z_{1}=x_{1}+i y_{1}$

$$
\begin{aligned}
& z_{2}=x_{2}+i y_{2} \\
\Rightarrow & x_{1} x_{2}-y_{1} y_{2}=0 \\
& \left(x_{1}+x_{2}\right)=0 \\
& x_{1}^{2}+y_{1} y_{2}=0 \\
\Rightarrow & y_{1} y_{2}=-x_{1}^{2} \\
\Rightarrow & y_{1} \text { and } y_{2} \text { have opposite signs. }
\end{aligned}
$$

79. Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If μ and σ^{2} represent mean and variance of X, respectively, then $10\left(\mu^{2}+\sigma^{2}\right)$ is equal to
(1) 25
(2) 250
(3) 30
(4) 20

Answer (4)
$\begin{array}{llllll}x_{i} & 0 & 1 & 2 & 3\end{array}$
Sol. $p_{i} \frac{35}{210}=\frac{1}{6} \quad \frac{105}{210}=\frac{1}{2} \quad \frac{3 \times 21}{210}=\frac{3}{10} \quad \frac{7}{210}=\frac{1}{30}$
$\mu=\sum p_{i} x_{i}=\frac{1}{2}+\frac{6}{10}+\frac{21}{210}$

$$
=\frac{1}{2}+\frac{3}{5}+\frac{1}{10}
$$

$$
=\frac{6}{5}
$$

$\sigma^{2}=\sum p_{i} x_{1}^{2}-\mu^{2}$
$=\left(\frac{1}{2}+\frac{4.3}{10}+9 \cdot \frac{1}{30}\right)-\left(\frac{6}{5}\right)^{2}$
$=\left(\frac{1}{2}+\frac{6}{5}+\frac{3}{10}\right)-\frac{36}{25}$
$=\frac{14}{25}$
Now, $10\left(\mu^{2}+\sigma^{2}\right)$
$=20$
80. Let $\lambda \neq 0$ be a real number. Let α, β be the roots of the equation $14 x^{2}-31 x+3 \lambda=0$ and α, γ be the roots of the equation $35 x^{2}-53 x+4 \lambda=0$. Then $\frac{3 \alpha}{\beta}$ and $\frac{4 \alpha}{\gamma}$ are the roots of the equation
(1) $7 x^{2}+245 x-250=0$
(2) $49 x^{2}+245 x+250=0$
(3) $7 x^{2}-245 x+250=0$
(4) $49 x^{2}-245 x+250=0$

Answer (4)
Sol. $35 x^{2}-53 x+4 \lambda=0$
$\left(14 x^{2}-31 x+3 \lambda=0\right) \times 2.5$
(i) and (ii) gives
$x=\frac{\lambda}{7}=\alpha$
$\alpha \beta=\frac{3 \lambda}{14} \Rightarrow \beta=\frac{3 \lambda}{14} \cdot \frac{7}{\lambda}=\frac{3}{2}$
$\alpha \gamma=\frac{4 \lambda}{35} \Rightarrow \gamma=\frac{4}{35} \cdot 7=\frac{4}{5}$
$\alpha+\beta=\frac{31}{14} \Rightarrow \alpha=\frac{5}{7}$
$\frac{3 \alpha}{\beta}=\frac{10}{7}, \frac{4 \alpha}{\gamma}=\frac{20}{7} \cdot \frac{5}{4}=\frac{25}{7}$
Equation formed will be

$$
\begin{aligned}
& x^{2}-5 x+\frac{250}{49}=0 \\
& 49 x^{2}-245 x+250=0
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
81. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a G.P of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24 , then $a_{1} a_{9}+a_{2} a_{4} a_{9}+a_{5}+a_{7}$ is equal to \qquad .

Answer (60)

Sol. Let r be the common ratio of the G.P

$$
\begin{aligned}
\therefore \quad & a_{1} r^{3} \times a_{1} r^{5}=9 \\
& a_{1}^{2} r^{8}=9 \Rightarrow a_{1} 4^{4}=3
\end{aligned}
$$

And

$$
\begin{aligned}
& a_{1}\left(r^{4}+r^{6}\right)=24 \\
\Rightarrow & 3\left(1+r^{2}\right)=24
\end{aligned}
$$

$\therefore \quad r^{2}=7$ and $a_{1}=\frac{3}{49}$
Now

$$
\begin{aligned}
& a_{1} a_{9}+a_{2} a_{4} a_{9}+a_{5}+a_{7} \\
& =a_{1}^{2} r^{8}+a_{1}^{3} r^{12}+24 \\
& =24+\frac{9}{7^{4}} \times 7^{4}+\frac{27}{7^{6}} \cdot 7^{6}=60
\end{aligned}
$$

82. Five digit numbers are formed using the digits 1,2 , $3,5,7$ with repetitions and are written in descending order with serial number. For example, the number 77777 has serial number 1. Then the serial number of 35337 is \qquad -.

Answer (1436)

Sol. Given digits 1, 2, 3, 5, 7
and number 35337
7

$$
5 x
$$

$$
5
$$

$$
37 \ldots--=5^{3}=125
$$

$$
35 \underline{z}_{--}=5^{2}=25
$$

$$
355
$$

$$
--=5^{2}=25
$$

$$
3537_{-}=5
$$

$$
3535_{-}=5
$$

$$
35337=1
$$

\therefore Serial no. $=1436$
83. Let the equation of the plane P containing the line $x+10=\frac{8-y}{2}=z$ be $a x+b y+3 z=2(a+b)$ and the distance of the plane P from the point $(1,27,7)$ be c. Then $a^{2}+b^{2}+c^{2}$ is equal to \qquad -

Answer (355)

Sol. Equation of the line:
$x+10=\frac{8-y}{2}=z$
and plane $P: a x+b y+3 z=2(a+b)$
\because line lies in P
$\therefore \quad-10 a+8 b=2 a+2 b$

$$
12 a=6 b \quad \Rightarrow \quad b=2 a
$$

and
$a-2 b+3=0$
So, $a=1 \quad b=2$
Now distance of $(1,27,7)$ from $P=c$

$$
\left.\begin{array}{c}
\Rightarrow \quad \frac{1+54+21-6}{\sqrt{14}}
\end{array}=c\right]+\begin{aligned}
\therefore & a^{2}+b^{2}+c^{2}= \\
& 1+4+\frac{4900}{14} \\
& =355
\end{aligned}
$$

84. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a differentiable function that satisfies the relation $f(x+y)=f(x)+f(y)-1, \forall x, y$ $\in \mathrm{R}$. If $f(0)=2$, then $|f(-2)|$ is equal to \qquad -

Answer (03)

Sol. $f(x+y)=f(x)+f(y)-1 \quad f(0)=1$

$$
\begin{aligned}
& f^{\prime}(x)=\operatorname{limit}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \\
& =\operatorname{limit}_{h \rightarrow 0} \frac{f(x)+f(h)-1-f(x)}{h} \\
& f^{\prime}(x)=\operatorname{limit}_{h \rightarrow 0} \frac{f(h)-1}{h} \\
& f^{\prime}(x)=f(0) \\
& f^{\prime}(x)=2 \\
& f(x)=2 x+c \\
& \because \quad f(0)=1 \\
& \begin{aligned}
1 & =c \\
\Rightarrow \quad c & =1 \\
f(x)= & 2 x+1 \\
|f(-2)| & =|2(+2)-1| \\
& =3
\end{aligned}
\end{aligned}
$$

85. Let the co-ordinates of one vertex of $\triangle A B C$ be $A(0$, $2, \alpha)$ and the other two vertices lie on the line $\frac{x+\alpha}{5}=\frac{y-1}{2}=\frac{z+4}{3}$. For $\alpha \in Z$, if the area of $\triangle A B C$ is 21 sq. units and the line segment $B C$ has length $2 \sqrt{21}$ units, then α^{2} is equal to \qquad -.

Answer (09)

Sol.

Let coordinate of $D=(5 k-\alpha, 2 k+1,3 k-4)$
$\therefore \quad D . R^{s}$. of $A D=<5 k-\alpha, 2 k-1,3 k-4-\alpha>$
$\therefore 5(5 k-\alpha)+2(2 k-1)+3(3 k-4-\alpha)=0$
$\therefore \quad 19 k-4 \alpha-7=0$
and $\frac{1}{2} \times 2 \sqrt{21} \times A D=21$
$\therefore \quad A D=\sqrt{21}$
$\therefore \quad(5 k-\alpha)^{2}+(2 k-1)^{2}+(3 k-4-\alpha)^{2}=21$
$\therefore 19 k^{2}-8 k \alpha+\alpha^{2}-14 k+4 \alpha=2 \ldots$ (ii)
from eq. (i) and (ii) : $\alpha=3$
$\therefore \quad \alpha^{2}=9$
86. Let \vec{a}, \vec{b} and \vec{c} be three non-zero non-coplanar vectors. Let the position vectors of four points A, B, C and D be $\dot{a}-\vec{b}+\dot{c}, \lambda \dot{a}-3 \vec{b}+4 \dot{c},-\dot{a}+2 \vec{b}-3 \dot{c}$ and $2 \vec{a}-4 \vec{b}+6 \vec{c}$ respectively. If $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ are coplanar, then λ is equal to \qquad .

Answer (2)

Sol. $\overrightarrow{A B}=(\lambda-1) \vec{a}+(-2) \vec{b}+3 \vec{c}$
$\overrightarrow{A C}=-2 \vec{a}+3 \vec{b}-4 \vec{c}$
$\overrightarrow{A D}=-\vec{a}-3 \vec{b}+5 \vec{c}$
$\because \quad \overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$ are co-planar

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\lambda-1 & -2 & 3 \\
-2 & 3 & -4 \\
1 & -3 & 5
\end{array}\right|[\vec{a} \vec{b} \vec{c}]=0 \\
& \Rightarrow\left|\begin{array}{ccc}
\lambda-1 & -2 & 3 \\
-2 & 3 & -4 \\
1 & -3 & 5
\end{array}\right|=0 \\
& 3(\lambda-1)-2(6)+3(6-3)=0 \\
& 3(\lambda-1)-12+9=0 \\
& 3(\lambda-1)=3 \\
& \lambda=2
\end{aligned}
$$

87. Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{n}$ be the ratio 2 : $5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is \qquad -
Answer (1120)

Sol. $\frac{{ }^{n} C_{r} 2^{r}}{{ }^{n} C_{r+1} 2^{r+1}}=\frac{2}{5}$
$\frac{r+1}{n-\gamma}=\frac{4}{5}$
$\frac{{ }^{n} C_{r+1} 2^{r+1}}{{ }^{n} C_{r+2} 22^{r+2}}=\frac{5}{8}$
$\frac{r+2}{n-r-1}=\frac{5}{4}$
Solving (i) and (ii)

$$
r=3, n=8
$$

Middle term $={ }^{n} C_{r+1}(2)^{r+1}$
$={ }^{8} C_{4}(2)^{4}$
$=1120$
88. Suppose f is a function satisfying $f(x+y)+f(x)+$ $f(y)$ for all $x, y \in \mathbb{N}$ and $f(1)=\frac{1}{5}$. If $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then m is equal to

Answer (10)

Sol. $f(x+y)=f(x)+f(y)$
$\Rightarrow f(x)=k x$
$f(1)=\frac{1}{5} \Rightarrow k=\frac{1}{5}$
$\therefore f(x)=\frac{1}{5} x$
$\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{5} \sum_{n=1}^{m} \frac{n}{n(n+1)(n+2)}=\frac{1}{12}$
$\Rightarrow \frac{1}{5} \sum_{n=1}^{m} \frac{1}{(n+1)(n+2)}=\frac{1}{12}$
$\Rightarrow \frac{1}{5}\left[\frac{1}{2}-\frac{1}{m+2}\right]=\frac{1}{12}$
$\Rightarrow m=10$
89. If all the six digit numbers $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$ with $0<$ $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}$ are arranged in the increasing order, then the sum of the digits in the $72^{\text {th }}$ number is \qquad .

Answer (32)

Sol. 1 \qquad $\rightarrow{ }^{8} C_{5}=56$
$23 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \rightarrow{ }^{6} C_{4}=\frac{15}{71}$
$72^{\text {th }}$ number $=245678$
Sum = 32
90. If the co-efficient of x^{9} in $\left(\alpha x^{3}+\frac{1}{\beta x}\right)^{11}$ and the coefficient of x^{-9} in $\left(\alpha x-\frac{1}{\beta x^{3}}\right)^{11}$ are equal, then $(\alpha \beta)^{2}$ is equal to \qquad .

Answer (01)

Sol. $T_{r_{1+1}}={ }^{11} C_{r_{1}}\left(\alpha x^{3}\right)^{11-r_{1}}(\beta x)^{-r_{1}}$

$$
\begin{aligned}
& ={ }^{11} C_{r_{1}} \alpha^{11-r_{1}} \beta^{-r_{1}} x^{33-4 r_{1}} \\
& 33-4 r_{1}=9 \Rightarrow r_{1}=6 \\
& T_{r_{2}+1}={ }^{11} C_{r_{2}}(\alpha x)^{11-r_{2}}(-1)^{r_{2}}\left(\beta x^{3}\right)^{-r_{2}} \\
& =(-1)^{r_{2}{ }^{11} C_{r_{2}} \alpha^{11-r_{2}} \beta^{-r_{2}} x^{11-4 r_{2}}} \\
& 11-4 r_{2}=-9 \Rightarrow r_{2}=5
\end{aligned}
$$

Equating the coefficients
${ }^{11} C_{6} \alpha^{5} \beta^{-6}={ }^{11} C_{5} \alpha^{6} \beta^{-5}$
$\Rightarrow \alpha \beta=1$

