

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- During the qualitative analysis of SO₃²⁻ using dilute H₂SO₄, SO₂ gas is evolved which turns K₂Cr₂O₇ solution (acidified with dilute H₂SO₄) :
 - (1) red (2) black
 - (3) blue (4) green

Answer (4)

Sol.
$$SO_2 + Cr_2O_7^{2-} \longrightarrow Cr_{3^+}^{3^+} + SO_4^{2^-}$$

32. Benzyl isocyanide can be obtained by:

Choose the **correct** answer from the options given below :

(4) B and C

- (1) A and D (2) Only B
- (3) A and B

Answer (3)

- 33. In the wet tests for identification of various cations by precipitation, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?
 - (1) Co^{2+} (2) Zn^{2+}

(3) Ni²⁺ (4) Fe³⁺

Answer (4)

- Sol. Fe³⁺ belongs to Illrd group
- 34. Amongst the following compounds, which one is an antacid?
 - (1) Meprobamate (2) Brompheniramine
 - (3) Ranitidine (4) Terfenadine

Answer (3)

- Sol. Ranitidine is not an antacid.
- 35. The alkaline earth metal sulphate(s) which are readily soluble in water is/are:
 - A. BeSO₄
 - B. MgSO₄
 - C. CaSO₄
 - D. SrSO₄
 - E. BaSO₄

Choose the **correct** answer from the options given below:

- (1) B only (2) A and B
- (3) B and C (4) A only

Answer (2)

- Sol. BeSO₄ and MgSO₄ are readily soluble in water.
- 36. Formation of photochemical smog involves the following reaction in which A, B and C are respectively.
 - i. $NO_2 \xrightarrow{hv} A + B$
 - $\label{eq:bound} ii. \quad B+O_2 \to C$
 - iii. A + C \rightarrow NO₂ + O₂

Choose the correct answer from the options given below:

- (1) O, N₂O and NO (2) NO, O and O_3
- (3) N, O₂ and O₃ (4) O, NO and NO_3^-

Answer (2)

Sol. i)
$$NO_2 \xrightarrow{h\nu} \frac{NO}{(A)} + \frac{O}{(B)}$$

ii) $\frac{O}{(B)} + O_2 \xrightarrow{O_3} \frac{O_3}{(C)}$
iii) $\frac{NO}{(A)} + \frac{O_3}{(C)} \xrightarrow{NO_2} + O_2$

- 37. Lithium aluminium hydride can be prepared from the reaction of
 - (1) LiH and $AI(OH)_3$ (2) LiCl and AI_2H_6
 - (3) LiCl, Al and H_2 (4) LiH and Al_2Cl_6

Answer (4)

Sol. $8LiH + Al_2Cl_6 \rightarrow 2LiAlH_4 + 6LiCl$

- 38. For OF₂ molecule consider the following:
 - A. Number of lone pairs on oxygen is 2.
 - B. FOF angle is less than 104.5°.
 - C. Oxidation state of O is -2.
 - D. Molecule is bent 'V' shaped
 - E. Molecular geometry is linear.

Correct options are:

(1) C, D, E only
(2) B, E, A only
(3) A, C, D only
(4) A, B, D only

Answer (4)

Sol.

- A : No. of lone pairs on oxygen = 2
- B: $\theta \in \Theta$ ($\theta < Bond angle in H_2O (104.5^\circ)$)
- D: molecule is bent "v" shaped
- 39. The major products 'A' and 'B', respectively, are

$$\begin{array}{c} \begin{array}{c} CH_{3} \\ +A' \leftarrow \underbrace{Cold}_{H_{2}SO_{4}} H_{3}C - C = CH_{2} \\ \end{array} \begin{array}{c} \begin{array}{c} H_{2}SO_{4} \\ 80^{\circ}C \end{array} \\ (1) \\ H_{3}C - C - CH_{3} \\ 0SO_{3}H \end{array} \\ \begin{array}{c} CH_{3} \\ -CH - CH_{2}CH_{2} - CH - CH_{2}CH_{2} \\ -HC - CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ -H_{3}C - C - CH_{3} \\ 0SO_{3}H \end{array} \\ \begin{array}{c} CH_{3} \\ -CH - CH_{2}CH_{2} - CH - CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ -CH - CH_{2}CH_{2} - CH - CH_{3} \\ 0SO_{4}H \end{array} \\ \end{array}$$

(3)
$$CH_3 - C = CH - C - CH_3 & CH_3 - C - CH_3 \\ CH_3 - C = CH - C - CH_3 & CH_3 - C - CH_3 \\ CH_3 & OSO_3H \\ CH_3 & OSO_3H \\ CH_3 & CH_3 & CH_3 \\ CH_3 & CH_3 \\$$

(4)
$$H_3C - C - CH_3 & CH_3 - C = CH - C - CH_3$$

 $H_3C - C - CH_3 & CH_3 - C = CH - C - CH_3$
 $H_3C - C - CH_3 + CH_3$

Answer (4)

Sol.

40. Match List I with List II List I

List II

- I. Fittig reaction
- II. Wurtz Fittig reaction
- C. $\xrightarrow{\sum_{i=1}^{N_{2}^{+}C^{-}}}_{C^{u_{2}}C_{2}} \xrightarrow{C^{u_{1}}C_{1}}_{O^{+}N_{2}}$ III. Finkelstein reaction
- D. C₂H₅CI + Nal

 $\label{eq:c2H5I} \rightarrow C_2 H_5 I + NaCI \qquad IV. \mbox{ Sandmeyer reaction}$ Choose the correct answer from the options given below:

A - II, B - I, C - III, D - IV
 A - II, B - I, C - IV, D - III
 A - IV, B - II, C - III, D - I
 A - III, B - II, C - IV, D - I

Answer (2)

(D) $C_2H_5CI + NaI \longrightarrow C_2H_5I + NaCI$

(Finkelstein reaction)

41. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : In expensive scientific instruments, silica gel is kept in watch-glasses or in semipermeable membrane bags.

Reason (R) : Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (2) (A) is false but (R) is true
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true but (R) is the correct explanation of (A)

Answer (4)

Sol. Assertion is correct and Reason is correct explanation of Assertion.

Silica gel adsorbs moisture and thus protects the instrument from water corrosion (rusting) and prevents malfunctioning

- 42. To inhibit the growth of tumours, identify the compounds used from the following :
 - (A) EDTA
 - (B) Coordination Compounds of Pt
 - (C) D Penicillamine
 - (D) Cis Platin

JEE (Main)-2023 : Phase-1 (30-01-2023)-Morning

Choose the correct answer from the option given below :

- (1) C and D only (2) B and D only
- (3) A and B only (4) A and C only

Answer (2)

- **Sol.** Cis-platin is [Pt(NH₃)₂Cl₂]; cis platin and other complexes of pt are used to inhibit the growth of tumours.
- 43. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Ketoses give Seliwonoff's test faster than Aldoses.

Reason (R) : Ketoses undergo β -elimination followed by formation of furfural.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Answer (1)

This test relies on the principle that, when heated, ketoses are more rapidly dehydrated than Aldoses.

 $\mathsf{Ketose} \to \mathsf{Red} \ \mathsf{color} \ \mathsf{formed} \ \mathsf{immediately}$

Aldose \rightarrow light pink color formed slowly

44. What is the correct order of acidity of the protons marked A–D in the given compounds?

- (1) $H_C > H_A > H_D > H_B$ (2) $H_D > H_C > H_B > H_A$
- (3) $H_C > H_D > H_B > H_A$ (4) $H_C > H_D > H_A > H_B$

Answer (4)

 $H_C > H_D > H_A > H_B$

H_C is hydrogen of carboxylic acid

H_D removal will lead to stable carbanion.

- 45. Which of the following compounds would give the following set of qualitative analysis?
 - (i) Fehling's Test : Positive
 - (ii) Na fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not prussian blue.

Answer (4)

Sol. Fehling solution is not given by aromatic aldehydes.

1, 2, 3 are aromatic aldehydes

- 46. In the extraction of copper, its sulphide ore is heated in a reverberatory furnace after mixing with silica to
 - (1) Decrease the temperature needed for roasting of Cu_2S
 - (2) Remove calcium as CaSiO₃
 - (3) Separate CuO as CuSiO₃
 - (4) Remove FeO as FeSiO₃

Answer (4)

- 47. Match List I with List II

	List-I (Atomic number)		List-II (Block of periodic table)
Α.	37	I.	p-block
В.	78	II.	d-block
C.	52	III.	f-block
D.	65	IV.	s-block

Choose the **correct** answer from the options given below

- (1) A-II, B-IV, C-I, D-III (2) A-IV, B-III, C-II, D-I
- (3) A-IV, B-II, C-I, D-III (4) A-I, B-III, C-IV, D-II

Answer (3)

Sol.

37 –	s-Block
78 –	<i>d</i> -Block
52 –	<i>p</i> -Block
65 –	f-Block

- 48. Which of the following is correct order of ligand field strength?
 - (1) NH₃ < en < CO < S^{2-} < $C_2O_4^{2-}$
 - (2) $S^{2-} < NH_3 < en < CO < C_2O_4^{2-}$

(3)
$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

(4) CO < en < NH₃ <
$$C_2O_4^{2-}$$
 < S^{2-}

Answer (3)

Sol. Ligand field strength

$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO_4$$

49. Match List I with List II

	List-I (Molecules/Ions)		List-II (No. of lone pairs of e⁻ on central atom)
Α.	IF ₇	I.	Three
В.	ICI4 ⁻	II.	One
C.	XeF ₆	III.	Two
D.	XeF ₂	IV.	Zero

Choose the **correct** answer from the options given below

- (1) A-II, B-III, C-IV, D-I (2) A-IV, B-I, C-II, D-III
- (3) A-II, B-I, C-IV, D-III (4) A-IV, B-III, C-II, D-I

Answer (4)

- **Sol.** (A) $IF_7 0$ lone pairs
 - (B) ICI_4^- 2 lone pairs
 - (C) XeF₆ 1 lone pair
 - (D) XeF₂ 3 lone pairs

- 50. Caprolactam when heated at high temperature in presence of water, gives
 - (1) Nylon 6, 6 (2) Nylon 6
 - (3) Dacron (4) Teflon

Answer (2)

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

51. A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K. The molecular mass of the solute is _____ g mol⁻¹. (Nearest integer) Given, water boils at 373 K, K_b for water = 0.52 K kg mol⁻¹

Answer (100)

Sol. $\Delta T_b = K_b.m$

(0.52) = (0.52) (m)2 (1000)

$$m = 1 = \frac{2(1000)}{(mw)(20)}$$

mw = 100

52. A 300 mL bottle of soft drink has 0.2 M CO₂ dissolved in it. Assuming CO₂ behaves as an ideal gas, the volume of the dissolved CO₂ at STP is _____ mL. (Nearest integer)

Given: At STP, molar volume of an ideal gas is 22.7 L mol^{-1} $\,$

Answer (1362)

Sol. Moles = 0.3 × 0.2

/olume at STP =
$$0.3 \times 0.2 \times 22.7$$

= 1.362 litre

= 1362 mL

 The energy of one mole of photons of radiation of frequency 2 × 10¹² Hz in J mol⁻¹ is _____. (Nearest integer)

[Given: $h = 6.626 \times 10^{-34}$ Js

 $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$]

Answer (798)

- **Sol.** E = nhv
 - $= (6.022 \times 10^{23}) (6.626 \times 10^{-34}) \times (2 \times 10^{12})$
 - = 798.03 J
 - ≈798 J
- 54. Some amount of dichloromethane (CH₂Cl₂) is added to 671.141 mL of chloroform (CHCl₃) to prepare 2.6×10^{-3} M solution of CH₂Cl₂ (DCM). The concentration of DCM is _____ ppm (by mass).

Given:

Atomic mass : C = 12

Cl = 35.5

Density of CHCl₃ = 1.49 g cm⁻³

Answer (148)

Sol. Mass of $CHCI_3 = 671.141 \times 1.49$

$$= 1000 \text{ gm}$$

2.6 × 10⁻³ = $\frac{\text{moles of CH}_2\text{Cl}_2}{0.671141}$

$$\Rightarrow$$
 moles of CH₂Cl₂ = 1.74496 × 10⁻³
mass of CH₂Cl₂ = 148.32 × 10⁻³ gn

Composition of CH₂Cl₂ = $\frac{148.32 \times 10^{-3}}{1000} \times 10^{6}$ = 148.32 ppm ≈ 148

55. Consider the cell $Pt_{(s)} | H_2 (g, 1 atm) | H^+ (aq, 1 M) || Fe^{3+}(aq),$ $Fe^{2+}(aq) | Pt(s)$ When the potential of the cell is 0.712 V at 298 K, the ratio $[Fe^{2+}] / [Fe^{3+}]$ is _____.

(Nearest integer)

Given: $Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$, $E^{\circ}Fe^{3+}$, $Fe^{2+} | Pt = 0.771$

$$\frac{2.303 \text{ RT}}{\text{F}} = 0.06$$

Answer (10)

Sol. Anode $H_2 \rightarrow 2H^+ + 2e^-$ Cathode $(Fe^{3+} + e^- \rightarrow Fe^{2+}) \times 2$ $H_2 + 2Fe^{3+} \rightarrow 2H^+ + 2Fe^{2+}$ $E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} log \left(\frac{Fe^{2+}}{Fe^{3+}}\right)^2$ $0.712 = 0.771 - 0.059 log \frac{Fe^{2+}}{Fe^{3+}}$ $- 0.059 = -0.059 log \frac{Fe^{2+}}{Fe^{3+}}$ $\frac{[Fe^{2+}]}{[Fe^{3+}]} = 10$

V

56. If compound A reacts with B following first order kinetics with rate constant 2.011 × 10^{-3} s⁻¹. The time taken by A (in seconds) to reduce from 7 g to 2 g will be ______. (Nearest Integer)

 $[\log 5 = 0.698, \log 7 = 0.845, \log 2 = 0.301]$

Answer (623)

Sol. t =
$$\frac{2.303}{k} \log \frac{C_0}{C_t}$$

= $\frac{2.303}{2.011 \times 10^{-3}} \log \frac{7}{2}$
= $\frac{2.303 \times 10^3}{2.011}$ (.845 - .301)
= 622.99
≈ 623 sec.

57. When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is _____ J. (Nearest integer)

Answer (0)

- **Sol.** For isothermal process of an ideal gas; $\Delta E = 0$
- The number of electrons involved in the reduction of permanganate of manganese dioxide in acidic medium is _____.

Answer (3)

Sol. $3e^- + 4H^+ + MnO_4^- \longrightarrow MnO_2 + 2H_2O$

59. 600 mL of 0.01 M HCl is mixed with 400 mL of 0.01 M H₂SO₄. The pH of the mixture is ______ × 10⁻². (Nearest integer)

[Given $\log 2 = 0.30$ $\log 3 = 0.48$ $\log 5 = 0.69$

$$\log 5 = 0.69$$

 $\log 7 = 0.84$

$$\log 11 = 1.04$$
]

Answer (186)

Sol.
$$[H^+] = \frac{6+8}{1000} = 14 \times 10^{-3}$$

$$pH = 3 - \log 14$$

60. A trisubstituted compound 'A', $C_{10}H_{12}O_2$ gives neutral FeCl₃ test positive. Treatment of compound 'A' with NaOH and CH₃Br gives $C_{11}H_{14}O_2$, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound B, $C_{10}H_{12}O_2$. Compound 'A' also decolorises alkaline KMnO₄. The number of π bond/s present in the compound 'A' is

Answer (4)

Sol. A : $C_{10}H_{12}O_2$

DU of A =
$$\frac{22-12}{2} = 5$$

1 DU is due to Ring (Benzene ring)

4 π -bonds will be there

(3 π -bonds in ring and 1 π -bond outside ring) as it decolorises alkaline KMnO₄.