MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Let the mean and standard deviation of marks of class A of 100 students be respectively 40 and α (>0), and the mean and standard deviation of marks of class B of n students be respectively 55 and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+n$ students are respectively 50 and 350 , then the sum of variances of classes A and B is :
(1) 450
(2) 650
(3) 900
(4) 500

Answer (4)

Sol. Let mean of class $A=\bar{x}_{A}$
\& Mean of class $B=\bar{x}_{B}$
$\therefore \quad \frac{\sum x_{A}}{100}=40$
\& $\frac{\sum x_{A}^{2}}{100}-40^{2}=\alpha^{2}$
also $\frac{\sum x_{B}}{n}=55$
$\& \frac{\sum x_{B}^{2}}{n}-55^{2}=(30-\alpha)^{2}$.
and $\frac{\sum x_{A}+\sum x_{B}}{100+n}=50$
$\frac{\sum x_{A}^{2}+\sum x_{B}^{2}}{100+n}-50^{2}=350$
By equation (i), (ii) \& (iii)
$4000+55 n=50(100+n)$
$\Rightarrow 5 n=1000 \quad \Rightarrow n=200$
also by (ii), (iii) \& (iv)
$\left(\alpha^{2}+40^{2}\right) 100+\left(55^{2}+(30-\alpha)^{2}\right) 200=\left(50^{2}+350\right) 300$
$\Rightarrow 3 \alpha^{2}-120 \alpha+\left(40^{2}+2 \times 55^{2}\right)-3\left(50^{2}+350\right)=0$
$\Rightarrow 3 \alpha^{2}-120 \alpha+900=0$
$\Rightarrow \alpha^{2}-40 \alpha+300=0$
$\Rightarrow \alpha=10$ or 30 (rejected)
Sum of variances $=10^{2}+20^{2}=500$
62. The foot of perpendicular form the origin O to a plane P which meets the co-ordinate axes at the points A, B, C is $(2, a, 4), a \in N$. If the volume of the tetrahedron OABC is 144 unit 3, then which of the following points is NOT on P?
(1) $(2,2,4)$
(2) $(3,0,4)$
(3) $(0,6,3)$
(4) $(0,4,4)$

Answer (2)

Sol. As (2, a, 4) is foot of perpendicular equation of plane
$2(x-2)+a(y-a)+4(z-4)=0$
Clearly for ($3,0,4$) $a \notin N$.
63. Let $y=y(x)$ be the solution of the differential equation $\left(3 y^{2}-5 x^{2}\right) y d x+2 x\left(x^{2}-y^{2}\right) d y=0$ such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
(1) $16 \sqrt{2}$
(2) 32
(3) $32 \sqrt{2}$
(4) 64

Answer (3)
Sol. $\frac{d y}{d x}=\frac{\left(5 x^{2}-3 y^{2}\right) y}{\left(x^{2}-y^{2}\right) 2 x} \quad y(1)=1$

$$
\Rightarrow v=1
$$

Put $y=v x$
$v+x \frac{d v}{d x}=\frac{v\left(5-3 v^{2}\right)}{2\left(1-v^{2}\right)}$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{5 v-3 v^{3}-2 v+2 v^{3}}{2\left(1-v^{2}\right)}$
$\Rightarrow \frac{2\left(v^{2}-1\right) d v}{v^{3}-3 v}=\frac{d x}{x}$
$\Rightarrow \frac{2}{3} \ln \left|v^{3}-3 v\right|=\ln x+c$
$\downarrow y(1)=1$

$$
\Rightarrow \quad \frac{2}{3} \ln 2=c
$$

$$
\therefore \quad \frac{2}{3} \ln \left(\frac{\left(\left(\frac{y}{x}\right)^{-3}-\frac{3 y}{x}\right)}{2}\right)=\ln x
$$

$$
\downarrow y(2)
$$

$$
\Rightarrow \quad\left(\frac{y^{3}}{8}-\frac{3 y}{2}\right)=2.2^{\frac{3}{2}}
$$

$$
\Rightarrow \quad y^{3}(2)-12 y(2)=32 \sqrt{2}
$$

64. Let $(a, b) \subset(0,2 \pi)$ be the largest interval for which $\sin ^{-1}(\sin \theta)-\cos ^{-1}(\sin \theta)>0, \theta \in(0,2 \pi)$, holds. If $\alpha x^{2}+\beta x+\sin ^{-1}\left(x^{2}-6 x+10\right)+\cos ^{-1}\left(x^{2}-6 x+10\right)$ $=0$ and $\alpha-\beta=b-a$, then α is equal to :
(1) $\frac{\pi}{16}$
(2) $\frac{\pi}{8}$
(3) $\frac{\pi}{48}$
(4) $\frac{\pi}{12}$

Answer (4)

Sol. $\sin ^{-1}(\sin \theta)>\cos ^{-1} \sin \theta$
For $Q \rightarrow\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$
$\therefore \quad \alpha-\beta=\frac{\pi}{2}$
also $\alpha x^{2}+\beta x+\frac{\pi}{2}=0 \& x=3$ only
$\therefore \quad 9 \alpha+3 \beta=-\frac{\pi}{2}$

$$
12 \alpha=\pi \Rightarrow \alpha=\frac{\pi}{12}
$$

65. $\lim _{x \rightarrow \infty} \frac{(\sqrt{3 x+1}+\sqrt{3 x-1})^{6}+(\sqrt{3 x+1}-\sqrt{3 x-1})^{6}}{\left(x+\sqrt{x^{2}-1}\right)^{6}+\left(x-\sqrt{x^{2}-1}\right)^{6}} x^{3}$
(1) is equal to 9
(2) does not exist
(3) is equal to $\frac{27}{2}$
(4) is equal to 27

Answer (3)

Sol. $\lim _{x \rightarrow \infty} \frac{2\left({ }^{6} C_{0}(\sqrt{3 x+1})^{6}+{ }^{6} C_{2} \times(\sqrt{3 x+1})^{4}+{ }^{6} C_{4}(\sqrt{3 x+1})^{2}+{ }^{6} C_{6}\right) x^{3}}{2\left({ }^{6} C_{0} x^{6}+{ }^{6} C_{2} x^{4}+{ }^{6} C_{4} x^{2}+{ }^{6} C_{6}\right)}$
$=\frac{3^{3}}{1}=27$
66. The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^{x}+1=0$, $x \in \mathrm{R}$ has :
(1) two solutions and only one of them is negative
(2) two solutions and both are negative
(3) four solutions two of which are negative
(4) no solution

Answer (2)

Sol. $\left(e^{2 x}+e^{-2 x}\right)+8\left(e^{x}-e^{-x}\right)+13=0$

$$
\begin{aligned}
& e^{x}-e^{-x}=t \\
& \left(t^{2}+2\right)+8 t+13=0 \\
& t=-5,-3 \\
& \quad e^{x}-e^{-x}=-5 e^{x}-e^{-x}=-3
\end{aligned}
$$

One negative Root|One negative Root
67. Let P be the plane, passing through the point $(1,-1,-5)$ and perpendicular to the line joining the points $(4,1,-3)$ and $(2,4,3)$. Then the distance of P from the point $(3,-2,2)$ is
(1) 4
(2) 7
(3) 5
(4) 6

Answer (3)
Sol. $\vec{n}=2 \hat{i}-3 \hat{j}-6 \hat{k}$
Equation of plane is
$2 x-3 y-6 z=35$
Or $2 x-3 y-6 z-35=0$
Distance from (3, -2, 2)
$=\left|\frac{6+6-12-35}{7}\right|$
$=5$ units
68. The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :
(1) $\sqrt{2}\left(\cos \frac{5 \pi}{12}+i \sin \frac{5 \pi}{12}\right)$
(2) $\cos \frac{\pi}{12}-i \sin \frac{\pi}{12}$
(3) $\sqrt{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right)$
(4) $\sqrt{2} i\left(\cos \frac{5 \pi}{12}-i \sin \frac{5 \pi}{12}\right)$

Answer (1)

Sol. $z=\frac{\sqrt{2} e^{\left(3 \frac{\pi}{4}\right) i}}{e^{i \frac{\pi}{3}}}$

$$
=\sqrt{2} e^{i\left(\frac{5 \pi}{12}\right)}
$$

69. Let the plane $P: 8 x+a_{1} y+a_{2} z+12=0$ be parallel to the line $L: \frac{x+2}{2}=\frac{y-3}{3}=\frac{z+4}{5}$. If the intercept of P on the y-axis is 1 , then the distance between P and L is:
(1) $\sqrt{\frac{7}{2}}$
(2) $\frac{6}{\sqrt{14}}$
(3) $\sqrt{\frac{2}{7}}$
(4) $\sqrt{14}$

Answer (4)

Sol. $16+3 \alpha_{1}+5 \alpha_{2}=0$
At y-axis $x=z=0$

$$
\begin{aligned}
& \alpha_{1} y+12=0 \\
& \alpha_{1}=-12 \\
& \alpha_{2}=4
\end{aligned}
$$

Equation of plane is

$$
8 x-12 y+4 z+12=0
$$

Or $2 x-3 y+z+3=0$
Distance from (-2, 3, -4)
$=\left|\frac{-4-9-4+3}{\sqrt{14}}\right|=\sqrt{14}$
70. Let H be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is \qquad $-$
(1) 3
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) 2

Answer (4)

Sol. $2 a e=(1+\sqrt{2})-(1-\sqrt{2})=2 \sqrt{2}$

$$
\begin{aligned}
& 2 \times a \times \sqrt{2}=2 \sqrt{2} \\
& \quad a=1 \\
& \quad b^{2}=a^{2}\left(e^{2}-1\right)=i(2-1)=1 \\
& \mathrm{LR}=\frac{2 b^{2}}{a}=2
\end{aligned}
$$

71. If a point $P(\alpha, \beta, \gamma)$ satisfying

$$
(\alpha \beta \gamma)\left(\begin{array}{lll}
2 & 10 & 8 \\
9 & 3 & 8 \\
8 & 4 & 8
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)
$$

lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to
(1) $\frac{11}{5}$
(2) 11
(3) $\frac{5}{4}$
(4) -1

Answer (2)
Sol. $\left[\begin{array}{lll}\alpha & \beta & \gamma\end{array}\right]\left[\begin{array}{ccc}2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$
$2 \alpha+9 \beta+8 \gamma=0$
$10 \alpha+3 \beta+4 \gamma=0$
$\left|\begin{array}{ccc}2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8\end{array}\right|=0$
$\therefore \quad$ Above system of equations has infinitely many Solutions
(ii) -4 (iii) $\Rightarrow \beta=6 \alpha$
(iii) $\Rightarrow \gamma=-7 \alpha$
(α, β, γ) lies on $2 x+4 y+3 z=5$
$\therefore 2 \alpha+4 \beta+3 \gamma=5$
Using (iv) and (v) in (vi);
$\alpha=1, \beta=6, \gamma=-7$
$\therefore \quad 6 \alpha+9 \beta+7 \gamma=11$
72. Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be three vectors if \vec{r} is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^{2}$ is equal to
(1) 560
(2) 449
(3) 336
(4) 339

Answer (4)

Sol. $\vec{r}-\vec{c}=\lambda \vec{b}$
$\vec{r}=\vec{c}+\lambda \vec{b}$
$\vec{r} \cdot \vec{a}=0$
$\vec{c} \cdot \vec{a}+\lambda(\vec{b} \cdot \vec{a})=0$
$8+\lambda(5)=0$
$\lambda=\frac{-8}{5}$
$\vec{r}=\vec{c}-\frac{8}{5} \vec{b}$
$5 \vec{r}=5 \vec{c}-8 \vec{b}$
$=17 \hat{i}-7 \hat{j}-\hat{k}$
$25|\bar{r}|^{2}=339$
73. The set of all values of a^{2} for which the line $x+y=0$ bisects two distinct chords drawn from a point $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ on the circle $2 x^{2}+2 y^{2}-$ $(1+a) x-(1-a) y=0$ is equal to
(1) $(8, \infty)$
(2) $(4, \infty)$
(3) $(0,4]$
(4) $(2,12]$

Answer (1)
Sol. If $(k,-k)$ is mid-point
Equation of chord :

$$
\begin{aligned}
2 x k+2 y(-k)-\frac{1+a}{2} & (x+k)-\frac{(1-a)}{2}(y-k) \\
& =4 k^{2}-(1+a) k-(1-a)(-k)
\end{aligned}
$$

JEE (Main)-2023 : Phase-1 (31-01-2023)-Evening
or $x\left(2 k-\frac{1+a}{2}\right)+y\left(-2 k-\frac{1-a}{2}\right)$

$$
=4 k^{2}-\left(\frac{1+a}{2}\right) k-(-k)\left(\frac{1-a}{2}\right)
$$

As it passes through $\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$

$$
\begin{aligned}
\frac{1+a}{2}\left(2 k-\frac{1+a}{2}\right)+\frac{1-a}{2} & \left(-2 k-\frac{1-a}{2}\right) \\
& =4 k^{2}-\frac{(1+a)}{2} k+k \frac{(1-a)}{2}
\end{aligned}
$$

So, quadratic in k should have $D>0$.
$a>8$
74. Among the relations
$S=\left\{(a, b): a, b \in \mathbb{R}-\{0\}, 2+\frac{a}{b}>0\right\}$ and
$T=\left\{(a, b): a, b \in \mathbb{R}, a^{2}-b^{2} \in \mathbb{Z}\right\}$,
(1) S is transitive but T is not
(2) neither S nor T is transitive
(3) both S and T are symmetric
(4) T is symmetric but S is not

Answer (4)

Sol. For S
If $2+\frac{a}{b}>0$ or $\frac{a}{b}>-2$
$\Rightarrow \frac{b}{a}>-2 \quad \therefore$ not symmetric
For T
$a^{2}-b^{2} \in I \Rightarrow b^{2}-a^{2} \in I \forall a, b \in \mathbb{R}$
$\therefore \quad T$ is symmetric but S is not.
75. The number of values of $r \in\{p, q, \sim p, \sim q\}$ for which $\quad((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q) \quad$ is \quad a tautology, is
(1) 4
(2) 1
(3) 2
(4) 3

Answer (3)

Sol. $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q) \equiv T$ (given)
$\equiv((\sim p \vee \sim q) \vee(r \vee q)) \wedge(\sim p \vee \sim r \vee q)$
$\equiv((\sim p \vee r) \vee(\sim q \vee q)) \wedge(\sim p \vee \sim r \vee q)$
$\equiv \sim p \vee \sim r \vee q$
For above statement to be tautology r can be $\sim p$ or q
\therefore Two values of r are possible.
76. If $\phi(x)=\frac{1}{\sqrt{x}} \int_{\frac{\pi}{4}}^{x}\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t) d t, x>0\right.$, then $\phi^{\prime}\left(\frac{\pi}{4}\right)$ is equal to
(1) $\frac{8}{6+\sqrt{\pi}}$
(2) $\frac{4}{6+\sqrt{\pi}}$
(3) $\frac{4}{6-\sqrt{\pi}}$
(4) $\frac{8}{\sqrt{\pi}}$

Answer (1)

Sol. $\phi(x)=\frac{1}{\sqrt{x}} \int_{\pi / 4}^{x}\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t$

$$
\begin{aligned}
\Rightarrow \quad \phi^{\prime}(x)=\frac{-1}{2 x^{3 / 2}} \int_{\pi / 4}^{x}(4 \sqrt{2} & \left.\sin t-3 \phi^{\prime}(t)\right) d t \\
& +\frac{1}{\sqrt{x}}\left(4 \sqrt{2} \sin (x)-3 \phi^{\prime}(x)\right)
\end{aligned}
$$

$$
x=\frac{\pi}{4}
$$

$$
\phi^{\prime}\left(\frac{\pi}{4}\right)=\frac{-1}{2\left(\frac{\pi}{4}\right)^{3 / 2}} \times 0+\sqrt{\frac{4}{\pi}}\left(4 \sqrt{2} \times \frac{1}{\sqrt{2}}-3 \phi^{\prime}\left(\frac{\pi}{4}\right)\right)
$$

$$
\Rightarrow \quad \phi^{\prime}\left(\frac{\pi}{4}\right)\left[1+\frac{6}{\sqrt{\pi}}\right]=\frac{2}{\sqrt{\pi}} \times 4
$$

$$
\Rightarrow \quad \phi^{\prime}\left(\frac{\pi}{4}\right)=\frac{8}{6+\sqrt{x}}
$$

Option (1) is correct.
77. Let $a_{1}, a_{2}, a_{3}, \ldots$. be an A.P. If $a_{7}=3$, the product $a_{1} a_{4}$ is minimum and the sum of its first n terms is zero, then $n!-4 a_{n}(n+2)$ is equal to :
(1) $\frac{381}{4}$
(2) 24
(3) 9
(4) $\frac{33}{4}$

Sol. $a_{7}=3 \Rightarrow a+6 d=3 \Rightarrow a=3-6 d$
$a_{1} \cdot a_{4}=a(a+3 d)$
$\Rightarrow(3-6 d)(3-6 d+3 d)$
$\Rightarrow 3(1-2 d) 3(1-d)$
$\Rightarrow 9\left(2 d^{2}-3 d+1\right)$
Let $f(d)=2 d^{2}-3 d+1$

$$
\begin{aligned}
& f^{\prime}(d)=4 d-3 \Rightarrow d=\frac{3}{4} \\
\therefore \quad & a=3-6 \cdot \frac{3}{4}=3-\frac{9}{2}=-\frac{3}{2} \\
& S_{n}=0 \\
& \frac{n}{2}(29+(n-1) d)=0 \\
\Rightarrow & 2 \cdot\left(-\frac{3}{2}\right)+(n-1)\left(\frac{3}{4}\right)=0 \\
\Rightarrow & 3=\frac{3}{4}(n-1) \\
\Rightarrow & n=5
\end{aligned}
$$

Now, $n!-4 . a_{n(n+2)}$

$$
\begin{aligned}
& =5!-4 \cdot a_{35} \\
& =120-4\left(-\frac{3}{2}+34 \cdot \frac{3}{4}\right) \\
& =120-(-6+102) \\
& =120-(96) \\
& =24
\end{aligned}
$$

78. The absolute minimum value, of the function $f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$, where $[f]$ denotes the greatest integer function, in the interval [-1. 2], is
(1) $\frac{3}{4}$
(2) $\frac{3}{2}$
(3) $\frac{1}{4}$
(4) $\frac{5}{4}$

Answer (1)

Sol. $x^{2}-x+1>0$
$\Rightarrow f(x)=\left(x^{2}-x+1\right)+\left[x^{2}-x+1\right]$
Now,

$$
x^{2}-x+1 \text { attains its minimum value at } x=\frac{1}{2}
$$

and $\min \left[x^{2}-x+1\right]=0$ as $x^{2}-x+1>0$
$\Rightarrow f(x)$ attains it min at $x=\frac{1}{2}$
$\therefore \quad f\left(\frac{1}{2}\right)=\frac{3}{4}+0=\frac{3}{4}$
Option (1) is correct.
79. Let $\alpha>0$. If $\int_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x=\frac{16+20 \sqrt{2}}{15}$, then α is equal to:
(1) 2
(2) 4
(3) $\sqrt{2}$
(4) $2 \sqrt{2}$

Answer (3)

Sol. $I=\int_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x, \alpha>0$

$$
\begin{aligned}
& =\frac{1}{\alpha} \int_{0}^{\alpha} x(\sqrt{x+\alpha}+\sqrt{x}) d x \\
& =\frac{1}{\alpha}\left\{\int_{0}^{\alpha} x \sqrt{x+\alpha} d x+\int_{0}^{\alpha} x^{3 / 2} d x\right\} \\
& =\frac{2 \alpha^{3 / 2}}{15}\left(2^{3 / 2}+2\right)+\frac{2 \alpha^{3 / 2}}{5} \\
& =\frac{2 \alpha^{3 / 2}\left(2^{3 / 2}+5\right)}{15}
\end{aligned}
$$

When $\alpha=\sqrt{2}$ then $\int_{0}^{\alpha} \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x=\frac{16+20 \sqrt{2}}{15}$
$\therefore \quad \alpha=\sqrt{2}$
80. Let $f: \mathbb{R}-\{2,6\} \rightarrow \mathbb{R}$ be real valued function defined as $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$. Then range of f is
(1) $\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)$
(2) $\left(-\infty,-\frac{21}{4}\right) \cup(0, \infty)$
(3) $\left(-\infty,-\frac{21}{4}\right] \cup[1, \infty)$
(4) $\left(-\infty,-\frac{21}{4}\right] \cup\left[\frac{21}{4}, \infty\right)$

Answer (1)
Sol. $y=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$
$\Rightarrow(y-1) x^{2}-(8 y+2) x+12 y-1=0$
Let $y \neq 1$, then $D \geq 0$

$$
\begin{aligned}
& 4(4 y+1)^{2}-4(y-1)(12 y-1) \geq 0 \\
\Rightarrow & 16 y^{2}+1+8 y-\left(12 y^{2}-13 y+1\right) \geq 0 \\
\Rightarrow & 4 y^{2}+21 y \geq 0 \\
\Rightarrow & y \in\left(-\infty,-\frac{21}{4}\right) \cup[0, \infty)-\{1\}
\end{aligned}
$$

for $y=1$,

$$
\begin{aligned}
& -8 x+12=2 x+1 \\
& x=\frac{11}{10} \quad \therefore \quad l \in R
\end{aligned}
$$

$\therefore \quad$ Range $=\left(-\infty,-\frac{21}{4}\right] \cup[0, \infty)$
\therefore option (1) is correct.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
81. If the constant term in the binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{\prime}}\right)^{9}$ is -84 and the coefficient of $x^{-3 /}$ is $2^{\alpha} \beta$, where $\beta<0$ is an odd number, then $|\alpha|-\beta \mid$ is equal to \qquad .

Answer (98)

Sol. Given binomial expansion of $\left(\frac{x^{\frac{5}{2}}}{2}-\frac{4}{x^{\prime}}\right)^{9}$

$$
\begin{aligned}
T_{r+1} & ={ }^{9} C_{r}\left(\frac{x^{\frac{5}{2}}}{2}\right)^{9-r}\left(\frac{-4}{x^{\prime}}\right)^{r} \\
& ={ }^{9} C_{r} x^{\frac{45-5 r}{2}-l r} \cdot 2^{r-9} \cdot r^{r} \cdot(-1)^{r}
\end{aligned}
$$

Now constant term $=-84$
So, $\frac{45-5 r}{2}=I r \Rightarrow 2 / r+5 r=45$
and ${ }^{9} C_{r} \cdot 2^{3 r-9}(-1)^{r}=-84$
So, $r=3$ and $l=5$

Now for $x^{-15} \frac{45-5 r}{2}-5 r=-15$

$$
45-15 r=-30
$$

$$
r=5
$$

\therefore Coefficient $=-{ }^{9} C_{5} 2^{6}=-63.2^{7}$
$\therefore \alpha=7, \beta=-63$
and $|\alpha|-\beta|=|7 \times 5+63|=98$
82. Let S be the set of all $a \in \mathbb{N}$ such that the area of the triangle formed by the tangent at the point $P(b$, $c), b, c \in \mathbb{N}$, on the parabola $y^{2}=2 a x$ the lines $x=b, y=0$ is 16 unit 2, then $\sum_{a \in S} a$ is equal to \qquad .

Answer (146)

Sol.

Tangent at $P(b, c)$:

$$
y c=a(x+b)
$$

for Q : $y=0$

$$
x=-b
$$

$\therefore \quad$ Area of shaded region $=16$

$$
\begin{aligned}
& \frac{1}{2} \times 2 b \times c=16 \\
& b c=16 \text { and } c^{2}=2 a b \\
\therefore \quad & 2 a=\frac{c^{2} \cdot c}{16} \quad \frac{16 \times 16 \times 16}{32} \\
& a=\frac{c^{3}}{32}, 1 \leq C \leq 16 \text { and divisor of } 16 \\
\therefore \quad & a=2,16,128 \\
\therefore \quad & \sum a=146
\end{aligned}
$$

83. The sum $1^{2}-2 \cdot 3^{2}+3 \cdot 5^{2}-4 \cdot 7^{2}+5 \cdot 9^{2}-\ldots+15 \cdot 29^{2}$ is \qquad -.
Answer (6592)

Sol. $S=1^{2}-2.3^{2}+3.5^{2}-4.7^{2}+\ldots \ldots+15.29^{2}$

$$
\begin{aligned}
& =\sum_{r=1}^{8}(2 r-1)(4 r-3)^{2}-\sum_{r=1}^{7} 2 r(4 r-1)^{2} \\
& =\sum_{r=1}^{8} 32 r^{3}-64 r^{2}+32 r-9-2-\sum_{r=1}^{7} 16 r^{3}-8 r^{2}+r \\
& =32 \times 36^{2}-64 \times 204+1152-72 \\
& \quad-2\left(16 \times 28^{2}-1120+28\right) \\
& =6592
\end{aligned}
$$

84. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2$ and $2(\vec{a} \times \vec{b})=2(\vec{c} \times \vec{a})$. If the angle between \vec{b} and \vec{c} is $\frac{2 \pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2}$ is equal to \qquad .
Answer (03)
Sol. $\vec{a} \times(2 \vec{b}+3 \vec{c})=0$
$\vec{a}=\lambda(2 \vec{b}+3 \vec{c})$
$|\vec{a}|^{2}=\lambda^{2}\left(4|b|^{2}+9|c|^{2}+12 \vec{b} \cdot \vec{c}\right)$
$31=31 \lambda^{2}$
$\lambda= \pm 1$
$\vec{a}= \pm(2 \vec{b}+3 \vec{c})$
$\frac{|\vec{a} \times \vec{c}|}{|\vec{a} \cdot \vec{b}|}=\frac{2|\vec{b} \times \vec{c}|}{2 \vec{b} \cdot \vec{b}+3 \vec{c} \cdot \vec{b}}$
$|\vec{b} \times \vec{c}|^{2}=\frac{1}{4} \cdot 4-\left(1-\frac{1}{2}\right)^{2}$
$=\frac{3}{4}$
$\therefore \frac{|\vec{a} \times \vec{c}|}{|\vec{a} \cdot \vec{b}|}=\frac{\sqrt{3}}{2 \cdot \frac{1}{4}-\frac{3}{2}}=\frac{\sqrt{3}}{-1}$
$\left(\frac{|\vec{a} \times \vec{c}|}{|\vec{a} \cdot \vec{b}|}\right)^{2}=3$
85. Let A be a $n \times n$ matrix such that $|A|=2$. If the determinant of the matrix $\operatorname{Adj}\left(2 \cdot \operatorname{Adj}\left(2 A^{-1}\right)\right)$. is 2^{84}, then n is equal to \qquad -

Answer (05)

Aakash

Sol. $\because\left|\operatorname{adj}\left(2 \cdot \operatorname{adj}\left(2 A^{-1}\right)\right)\right|=2^{84}$
$\Rightarrow 2^{n \cdot(n-1)}\left|\operatorname{adj}\left(2 A^{-1}\right)\right|^{(n-1)}=2^{84}$
$\Rightarrow \quad 2^{n(n-1)}\left|2 A^{-1}\right|^{(n-1)^{2}}=2^{84}$
$\Rightarrow 2^{n(n-1)} \cdot 2^{n(n-1)^{2}} \cdot \frac{1}{|A|^{(n-1)^{2}}}=2^{84}$
$\Rightarrow \quad 2^{n(n-1)+n(n-1)^{2}-(n-1)^{2}}=2^{84}\{\because|4|=2\}$
$\therefore \quad n(n-1)+(n-1)^{3}=84$
$\therefore \quad n=5$
86. The coefficient of x^{-6}, in the expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$, is \qquad .

Answer (5040)

Sol. Coeff of x^{-6} in $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$

$$
\begin{aligned}
T_{r+1} & ={ }^{9} C_{r}\left(\frac{4 x}{5}\right)^{9-r}\left(\frac{5}{2 x^{2}}\right)^{r} \\
9-3 r & =-6 \\
r & =5
\end{aligned}
$$

Coeff of $x^{-6}={ }^{9} C_{5}\left(\frac{4}{5}\right)^{4}\left(\frac{5}{2}\right)^{5}$

$$
=5040
$$

87. Let $A=\left[a_{i j}\right], a_{i j} \in \mathbb{Z} \cap[0,4], 1 \leq i, j \leq 2$. The number of matrices A such that the sum of all entries is a prime number $p \in(2,13)$ is \qquad .

Answer (204)

Sol. $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{13} & a_{14}\end{array}\right]$
Such that $\Sigma \mathrm{a}_{\mathrm{ii}}=3,5,7$ or 11
Then for sum 3 , the possible entries are $(0,0,0,3)$, ($0,0,1,2$), ($0,1,1,1$).

Then total number of possible matrices

$$
\begin{aligned}
& =4+12+4 \\
& =20
\end{aligned}
$$

JEE (Main)-2023 : Phase-1 (31-01-2023)-Evening
For sum 5 the possible entries are ($0,0,1,4$), $(0,0,2,3),(0,1,2,2),(0,1,1,3)$ and (1, 1, 1, 2).
\therefore Total possible matrices $=12+12+12+12+4=52$
For sum 7 the possible entries are ($0,0,3,4$), (0, 2, 2, 3), (0, 1, 2, 4), (0, 1, 3, 3), (1, 2, 2, 2), $(1,1,2,3)$ and ($1,1,1,4$).
\therefore Total possible matrices $=80$
For sum 11 the possible entries are ($0,3,4,4$), $(1,2,4,4),(2,3,3,3),(2,2,3,4)$.
\therefore Total number of matrices $=52$
\therefore Total required matrices $=20+52+80+52$

$$
=204
$$

88. Let the area of the region
$\left\{(x, y):|2 x-1| \leq y \leq\left|x^{2}-x\right|, 0 \leq x \leq 1\right\}$ be A. Then $(6 A+11)^{2}$ is equal to \qquad .

Answer (125)

Sol. For B,

$$
\begin{aligned}
& x-x^{2}=2 x-1 \\
& x^{2}+x-1=0 \\
& x=\frac{-1+\sqrt{5}}{2}
\end{aligned}
$$

Area $=2($ area of $B C E)$

$$
\begin{aligned}
& A=2 \int_{\frac{1}{2}}^{\frac{\sqrt{5}-1}{2}}\left(x-x^{2}\right)-(2 x-1) d x \\
& =2 \int_{\frac{1}{2}}^{\frac{\sqrt{5}-1}{2}} 1-x-x^{2} d x=\left.2\left(x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{\frac{1}{2}} ^{\frac{\sqrt{5}-1}{2}}
\end{aligned}
$$

$=2\left\{\left(\frac{\sqrt{5}-1}{2}-\frac{1}{2}\right)-\left\{\left(\frac{\sqrt{5}-1}{2}\right)^{2}-\frac{1}{4}\right\} \frac{1}{2}\right.$

$$
\left.-\left[\left(\frac{\sqrt{5}-1}{2}\right)^{3}-\frac{1}{8}\right] \frac{1}{3}\right\}
$$

$$
A=\frac{-11+5 \sqrt{5}}{6}
$$

$\Rightarrow(6 A+11)^{2}=125$
89. Let A be the event that the absolute difference between two randomly chosen real numbers in the sample space $[0,60]$ is less than or equal to a. If $P(A)=\frac{11}{36}$, then a is equal to \qquad .

Answer (10)

Sol. Let two numbers be x and y
$|y-x|<a($ where $a>0)$
$-a<y-x<a$

Required probability $=\frac{\text { Area of shaded region }}{\text { Total area }}$
$\frac{[A B G]+[D E F]}{[O G A B C D E F]}=1-\frac{11}{36}$
$\frac{2[A B G]}{3600}=\frac{25}{36}$
$[A B G]=1250$
$\frac{1}{2}(60-a)^{2}=1250$
$(60-a)^{2}=2500$
$a=10,110$ (Rejected)
$a=10$
90. If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=11: 21$, then $n^{2}+n+15$ is equal to

Answer (45)

Sol. $\frac{\frac{(2 n+1)!}{(n+2)!}}{\frac{(2 n-1)!}{(n-1)!}}=\frac{11}{21}$
$\frac{(2 n+1) 2 n}{(n+2)(n+1) n}=\frac{11}{21}$
$84 n+42=11\left(n^{2}+3 n+2\right)$
$11 n^{2}-51 n-20=0$
$(n-5)(11 n+4)=0$
$n=5, \frac{-4}{11}$ (Rejected)
$n^{2}+n+15=45$

