CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. Cobalt chloride when dissolved in water forms pink coloured complex \underline{X} which has octahedral geometry. This solution on treating with conc. HCl forms deep blue complex, \underline{Y} which has a \underline{Z} geometry. X, Y and Z , respectively, are
(1) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}, \mathrm{Y}=[\mathrm{CoCl}]^{3-}, \mathrm{Z}=$ Octahedral
(2) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}=$ Tetrahedral
(3) $\left.\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Y}=[\mathrm{CoCl}]_{6}\right]^{--}, \mathrm{Z}=$ Octahedral
(4) $\mathrm{X}=\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Y}=\left[\mathrm{CoCl}_{4}\right]^{2-}, \mathrm{Z}=$ Tetrahedral

Answer (4)

Sol. $\mathrm{CoCl}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{X})$

Tetrahedral (Z)
Hence correct answer is option (4)
32. The correct order of basicity of oxides of vanadium is
(1) $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{5}>\mathrm{V}_{2} \mathrm{O}_{4}$
(2) $\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{5}$
(3) $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
(4) $\mathrm{V}_{2} \mathrm{O}_{5}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{3}$

Answer (3)

Sol. $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
As positive oxidation state increases acidic nature increases and basic nature decreases.
33. Adding surfactants in non polar solvent, the micelles structure will look like

(a)

(d)

(1) c
(2) a
(3) d
(4) b

Answer (2)

Polar
Sol.

Non-polar

In non-polar solvent non-polar part will point out

(a)

Non-polar part will interact with non-polar solvent.
34. Which one of the following statements is correct for electrolysis of brine solution?
(1) Cl_{2} is formed at cathode
(2) H_{2} is formed at anode
(3) O_{2} is formed at cathode
(4) OH^{-}is formed at cathode

Answer (4)

Sol. During electrolysis of Brine
$2 \mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
$2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{OH}^{-}$
Cathode $2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}$
Anode $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}$.
At cathode H_{2} is liberated
At anode Cl_{2} is formed.
35. When Cu^{2+} ion is treated with KI , a white precipitate, X appears in solution. The solution is titrated with sodium thiosulphate, the compound Y is formed. X and Y respectively are
(1) $\mathrm{X}=\mathrm{Cul}_{2} \quad \mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
(2) $\mathrm{X}=\mathrm{Cul}_{2} \quad \mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
(3) $\mathrm{X}=\mathrm{Cu}_{2} \mathrm{I}_{2} \quad \mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{5}$
(4) $\mathrm{X}=\mathrm{Cu}_{2} \mathrm{I}_{2} \quad \mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

Answer (4)
Sol. $2 \mathrm{Cu}^{2+}+4 \mathrm{KI} \longrightarrow \underset{\text { White pot. }}{\mathrm{Cu}_{2} \mathrm{I}_{2}}+\mathrm{I}_{2}$
$\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \longrightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
$\mathrm{X}=\mathrm{Cu}_{2} \mathrm{I}_{2}$
$\mathrm{Y}=\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
36. Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from $\mathrm{n}=4$ to $\mathrm{n}=2$ of He^{+}spectrum
(1) $n=2$ to $n=1$
(2) $\mathrm{n}=3$ to $\mathrm{n}=4$
(3) $n=1$ to $n=2$
(4) $n=1$ to $n=3$

Answer (1)
Sol. $\bar{v}_{\mathrm{He}^{+}}=\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \mathrm{z}^{2}$

$$
\begin{aligned}
& =R\left[\frac{1}{(2)^{2}}-\frac{1}{(4)^{2}}\right] 4 \\
& =R\left[\frac{1}{1}-\frac{1}{4}\right] \\
& =\frac{3}{4} R
\end{aligned}
$$

$$
\begin{aligned}
\bar{v}_{2 \rightarrow 1}=\frac{1}{\lambda} & =\mathrm{R}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
& =\mathrm{R}\left[\frac{1}{1}-\frac{1}{(2)^{2}}\right] \\
& =\frac{3}{4} \mathrm{R}
\end{aligned}
$$

37. An organic compound ' A ' with empirical formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B . B is
(1)

(2)

(3)

(4)

Answer (4)

Sol.

38. Match List I with List II

	List I		List II
A.	XeF_{4}	I.	See-saw
B.	SF_{4}	II.	Square planar
C.	NH_{4}^{+}	III.	Bent T-shaped
D.	BrF $_{3}$	IV.	Tetrahedral

Choose the correct answer from the options given below:
(1) $A-I V, B-I I I, C-I I, D-I$
(2) $A-I I, B-I, C-I I I, D-I V$
(3) $A-I I, B-I, C-I V, D$ III
(4) A - IV, B - I, C - II, D - III

Answer (3)
Sol.
A-II B-I C-IV
D-III

				Hybridisation
XeF_{4}	-	Square planar	-	$s p^{3} d^{2}$
SF_{4}	-	See Saw	-	$s p^{3} d$
NH_{4}^{+}	-	Tetrahedral	-	$s p^{3}$
BrF_{3}	-	Bent-T-shape	-	$s p^{3} d$

39. Consider the following reaction

The correct statement for product B is. It is
(1) racemic mixture and gives a gas with saturated NaHCO_{3} solution
(2) optically active alcohol and is neutral
(3) optically active and adds one mole of bromine
(4) racemic mixture and is neutral

Answer (1)

Sol.

Racemic mixture effervescence with NaHCO_{3}
40. $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent in
(1) $2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{Na}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+4 \mathrm{H}_{2} \mathrm{O}$
(4) $2 \mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Answer (4)

Sol. $\mathrm{H}_{2} \mathrm{O}_{2}$ act as a reducing agent
$2 \mathrm{Na}^{+2} \mathrm{O}^{+1} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
Cl from (+1) state changes to Cl^{-1}
41. Identify X, Y and Z in the following reaction. (Equation not balanced)
$\mathrm{ClO}^{\bullet}+\mathrm{NO}_{2} \rightarrow \underline{\mathrm{X}} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underline{Y}+\underline{\mathrm{Z}}$
(1) $\mathrm{X}=\mathrm{ClONO}_{2}, \mathrm{Y}=\mathrm{HOCI}, \mathrm{Z}=\mathrm{NO}_{2}$
(2) $X=\mathrm{ClONO}_{2}, Y=\mathrm{HOCl}, \mathrm{Z}=\mathrm{HNO}_{3}$
(3) $X=\mathrm{ClNO}_{3}, Y=\mathrm{Cl}_{2}, Z=\mathrm{NO}_{2}$
(4) $\mathrm{X}=\mathrm{CINO}_{2}, \mathrm{Y}=\mathrm{HCl}, \mathrm{Z}=\mathrm{HNO}_{3}$

Answer (2)

Sol. $\mathrm{ClO}+\mathrm{NO}_{2} \longrightarrow \mathrm{ClONO}_{2}$
(X)

42. The correct increasing order of the ionic radii is
(1) $\mathrm{K}^{+}<\mathrm{S}^{2-}<\mathrm{Ca}^{2+}<\mathrm{Cl}^{-}$
(2) $\mathrm{Cl}^{-}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{S}^{2-}$
(3) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
(4) $\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{Ca}^{2+}<\mathrm{K}^{+}$

Answer (3)

Sol. Given ions are isoelectronic more is nuclear charge per electron smaller is size

| | Ca^{+2} | $<\mathrm{K}^{+}<$ | $\mathrm{Cl}^{-}<$ | S^{2-} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| p | 20 | 19 | 17 | 16 |
| e | 18 | 18 | 18 | 18 |

43. Match items of columsn I and II

Column I (Mixture of compounds)		Column II (Separation Technique)	
(A)	$\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(i)	Crystallization
(B)		(ii)	Differential solvent extraction
(C)	Kerosene Naphthalene	(iii)	Column chromatography
(D)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} / \mathrm{NaCl}$	(iv)	Fractional Distillation

Correct match is
(1) A-(ii), B-(iii), C-(iv), D-(i)
(2) A-(ii), B-(iv), C-(i), D-(iii)
(3) A-(i), B-(iii), C-(ii), D-(iv)
(4) A-(iii), B-(iv), C-(ii), D-(i)

Answer (1)
Sol. Water and dichloromethane can be separated by differential extraction.

Which $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and NaCl can be separated by crystallization.
44. Choose the correct set of reagents for the following conversion.

$$
\begin{aligned}
& \text { trans }\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right) \rightarrow \\
& \qquad \operatorname{cis}\left(\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}\right)
\end{aligned}
$$

(1) Br_{2}, alc• $\mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{H}_{2}$ Lindlar Catalyst
(2) $\mathrm{Br}_{2}, \mathrm{aq} \cdot \mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{Na}\left(\mathrm{Liq} \mathrm{NH}_{3}\right)$
(3) Br_{2}, alc•KOH, $\mathrm{NaNH}_{2}, \mathrm{Na}\left(\mathrm{Liq} \mathrm{NH}_{3}\right)$
(4) $\mathrm{Br}_{2}, \mathrm{aq} \cdot \mathrm{KOH}, \mathrm{NaNH}_{2}, \mathrm{H}_{2}$ Lindlar Catalyst

Answer (1)
Sol.

cis

Consider the above reaction and identify the product B.
(1)

(2)

(3)

(4)

Answer (1)
Sol.

46. The correct order of melting points of dichlorobenzenes is
(1)
 $>$

(2)

(3)

$>$

(4)

Answer (1)

Sol. Out of $\mathrm{o}, \mathrm{m}, \mathrm{p}$-dichlorobenzene para isomer has maximum melting point due to symmetrical nature.
47. A protein ' X ' with molecular weight of $70,000 \mathrm{u}$, on hydrolysis gives amino acids. One of these amino acid is
(1)

(2)

(3)

(4)

Answer (1)

Sol. Protein upon hydrolysis gives α-amino acids. Only option (1) contains α-amino acid. Hence the correct answer is (1).
48. $\mathrm{Nd}^{2+}=$ \qquad
(1) $4 f^{3}$
(2) $4 f^{4} 6 s^{2}$
(3) $4 f^{4}$
(4) $4 f^{2} 6 s^{2}$

Answer (3)
Sol. Neodymium $\quad N d=4 f^{4} 6 s^{2}$

$$
\mathrm{Nd}^{2+}=4 \mathrm{f}^{4} .
$$

49. Which of the following artificial sweeteners has the highest sweetness value in comparison to cane sugar?
(1) Sucralose
(2) Aspartame
(3) Saccharin
(4) Alitame

Answer (4)
Sol. Highest sweetness value is of Alitame
Sucralose $=600$
Aspartame $=100$
Saccharin $=550$
Alitame $=2000$
50. The methods NOT involved in concentration of ore are
A. Liquation
B. Leaching
C. Electrolysis
D. Hydraulic washing
E. Froth floatation

Choose the correct answer from the options given below
(1) B, D and C only
(2) B, D and E only
(3) C, D and E only
(4) A and C only

Answer (4)

Sol. (A) and (C) only
Liquation is used for purification of metal.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
51. On complete combustion, 0.492 g of an organic compound gave 0.792 g of CO_{2}. The \% of carbon in the organic compound is (Nearest integer)

Answer (44)

Sol. Percentage of $\mathrm{C}=\frac{\mathrm{W}_{\mathrm{CO}_{2}}}{\mathrm{~W}_{\text {org.comp }}} \times \frac{12}{44} \times 100$

$$
\begin{aligned}
& =\frac{0.792}{0.492} \times \frac{12}{44} \times 100 \\
& =43.90
\end{aligned}
$$

52. The oxidation state of phosphorus in hypophosphoric acid is + \qquad

Answer (4)

Sol. Hypophosphoric acid $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
Oxidation state is +4

53. For reaction: $\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})$
$K_{p}=2 \times 10^{12}$ at $27^{\circ} \mathrm{C}$ and 1 atm pressure. The K_{c} for the same reaction is \qquad $\times 10^{13}$. (Nearest integer)
(Given $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
Answer (1)
Sol. $\mathrm{SO}_{2_{(\mathrm{g})}}+\frac{1}{2} \mathrm{O}_{2_{(\mathrm{g})}} \rightleftharpoons \mathrm{SO}_{3(\mathrm{~g})}$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
$2 \times 10^{12}=K_{c}(0.082 \times 300)^{-1 / 2}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =2 \times 10^{12} \times(0.082 \times 300)^{1 / 2} \\
& =9.9 \times 10^{12} \\
& =0.99 \times 10^{13} \\
& \approx 1 \times 10^{13}
\end{aligned}
$$

54. How many of the transformations given below would result in aromatic amines?
(1)

(2)

(3)

(4)

Answer (3)

Sol. 1, 3, 4 will give Aniline.
Gabriel phthalimide synthesis cannot be used to prepare Aniline.
(1)

Hoffmann Bromamide synthesis
(3)

(4)

55. The enthalpy change for the conversion of $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(\mathrm{aq})$ is $(-)$ \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (Nearest integer)

Given : $\Delta_{\text {dis }} \mathrm{H}_{\mathrm{Cl}_{2}(\mathrm{~g})}^{\ominus}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\Delta_{\mathrm{eg}} \mathrm{H}_{\mathrm{Cl}(\mathrm{g})}^{\ominus}=-350 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\Delta_{\text {hyd }} \mathrm{H}_{\mathrm{Cl}_{(\mathrm{g})}^{-}}^{\ominus}=-380 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer (610)

Sol. $\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cl}_{(\mathrm{aq})}^{-} \quad \Delta \mathrm{H}=$?

$$
\begin{aligned}
\Delta \mathrm{H} & =\frac{1}{2} \Delta_{\text {diss }} \mathrm{H}_{\mathrm{Cl}_{2}}^{\circ}+\Delta_{\mathrm{eg}} \Delta \mathrm{H}_{\mathrm{Cl}(\mathrm{~g})}^{\circ}+\Delta_{\mathrm{hyd}} \mathrm{H}_{\mathrm{Cl}_{(\mathrm{g})}^{\circ}}^{\circ} \\
& =\frac{1}{2} \times 240+(-350)+(-380) \\
& =-610 \mathrm{~kJ} \mathrm{~mol}^{-}
\end{aligned}
$$

56. The total pressure of a mixture of non-reacting gases $X(0.6 \mathrm{~g})$ and $Y(0.45 \mathrm{~g})$ in a vessel is 740 mm of Hg . The partial pressure of the gas X is
\qquad mm of Hg . (Nearest integer)
(Given : molar mass $X=20$ and $Y=45 \mathrm{~g} \mathrm{~mol}^{-1}$)

Answer (555)

Sol. $\mathrm{P}_{\text {Total }}=740 \mathrm{~mm}$ of Hg
$P_{x}=$ mole fraction of $[X] P_{\text {Total }}$
$\mathrm{n}_{\mathrm{x}}=\frac{0.6}{20}=0.03$
$n_{Y}=\frac{0.45}{45}=0.01$
Mole fraction of $X=\frac{0.03}{0.01+0.03}=\frac{3}{4}$
Partial pressure of $X=\frac{3}{4} \times 740$

$$
=555 \mathrm{~mm} \text { of } \mathrm{Hg}
$$

57. The logarithm of equilibrium constant for the reaction $\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{PdCl}_{4}^{2-}$ is \qquad (Nearest integer)
Given : $\frac{2.303 R T}{F}=0.06 \mathrm{~V}$
$\mathrm{Pd}_{(\mathrm{aq})}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s}) \quad \mathrm{E}^{\ominus}=0.83 \mathrm{~V}$
$\mathrm{PdCl}_{4}^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pd}(\mathrm{s})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\ominus}=0.65 \mathrm{~V}$

Answer (6)

Sol. $\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons\left[\mathrm{PdCl}_{4}\right]^{2-}$

$$
\begin{aligned}
& \mathrm{E}^{0}=(0.83)-(0.65)=0.18 \mathrm{~V} \\
& 0=0.18-\frac{0.06}{2} \log \mathrm{k}_{\text {eq }} \\
& 0.18=0.03 \log _{\mathrm{k}} \mathrm{k}_{\text {eq }}
\end{aligned}
$$

$\log \mathrm{k}_{\mathrm{eq}}=6$
58. $\mathrm{A} \rightarrow \mathrm{B}$

The rate constants of the above reaction at 200 K and 300 K are $0.03 \mathrm{~min}^{-1}$ and $0.05 \mathrm{~min}^{-1}$ respectively. The activation energy for the reaction is \qquad J (Nearest integer)
(Given : $\ln 10=2.3$
$\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\log 5=0.70$
$\log 3=0.48$
$\log 2=0.30)$

Answer (2520)

Sol. $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.3 \times 8.3}\left(\frac{1}{200}-\frac{1}{300}\right)$

$$
\begin{aligned}
& \log \frac{0.05}{0.03}=\frac{E_{a}}{2.3 \times 8.3}\left(\frac{1}{600}\right) \\
& \begin{aligned}
&(0.70-0.48)=\frac{E_{a}}{2.3 \times 8.3} \times \frac{1}{600} \\
& \Rightarrow 0.22=\frac{E_{a}}{2.3 \times 8.3} \times \frac{1}{600} \\
& E_{a}=2.3 \times 8.3 \times 600 \times 0.22 \\
& \quad=2519.88 \\
& \approx 2520 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

59. At $27^{\circ} \mathrm{C}$, a solution containing 2.5 g of solute in 250.0 mL of solution exerts an osmotic pressure of 400 Pa . The molar mass of the solute is $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer)
(Given : R $=0.083 \mathrm{~L}^{\text {bar K }}{ }^{-1} \mathrm{~mol}^{-1}$)

Answer (62250)

Sol. $400=\frac{2.5}{\mathrm{mw}} \times 4 \times\left(.083 \times 10^{5}\right) \times 300$

$$
\begin{aligned}
\mathrm{mw} & =\frac{10 \times 0.083 \times 3}{4} \times 10^{5} \\
& =62250
\end{aligned}
$$

60. Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g of zinc with excess HCl is \qquad L. (Nearest integer)
(Given : Molar mass of Zn is $65.4 \mathrm{~g} \mathrm{~mol}^{-1}$ and Molar volume of H_{2} at STP $=22.7 \mathrm{~L}$)
Answer (4)
Sol. $\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
$n_{Z n}=\frac{11.5}{65.4}=0.176$
$\mathrm{V}_{\mathrm{H}_{2}}=0.176 \times 22.7=3.99$ litre
