1 1		19	A -
61.	The correct order in which the first io	nisation potential increases is	
	1) Na, K, Be	2) K, Na, Be	
	3) K, Be, Na	4) Be, Na, K	
62.	10 cm ³ of 0.1 N monobasic acid requinormality is	ires 15 cm ³ of sodium hydroxide	e solution who
	1) 1.5 N	2) 0.15 N	
	3) 0.066 N	4) 0.66 N	
63.	The IUPAC name for tertiary butyl iod	lide is	
	1) 4-Iodobutane	2) 2-Iodobutane	
	3) 1-Iodo, 3-methyl propane	4) 2-Iodo 2-methyl propan	e
64.	When sulphur dioxide is passed in an of sulphur is changed from	acidified $K_2Cr_2O_7$ solution, the	oxidation state
	1) + 4 to 0	2) + 4 to + 2	
	3) + 4 to + 6	4) + 6 to + 4	
65.	Mass of 0.1 mole of Methane is		

1) 1 g

2) 16 g

3) 1.6 g

4) 0.1 g

66.	Methoxy	methane and ethanol are		
	1)	Position isomers	2)	Chain isomers
	3)	Functional isomers	4)	Optical isomers
67.	When th	e azimuthal quantum number has	the	value of 2, the number of orbitals possib
	1)	7	2)	5
	3)	3	4)	0
68.		reaction $Fe_2O_3 + 3CO \longrightarrow 2F$ to reduce one mole of ferric oxide		3CO ₂ the volume of carbon monoxid
	1)	22.4 dm ³	2)	$44.8~\mathrm{dm}^3$
	3)	67.2 dm ³	4)	11.2 dm ³
69.	The mon	omers of Buna-S rubber are		
	1)	vinyl chloride and sulphur	2)	butadiene
	3)	styrene and butadiene	4).	isoprene and butadiene
70.	An eleme	ent with atomic number 21 is a		
	1)	halogen	2)	representative element
	3)	transition element	4)	alkali metal

71.	The maximum number of hydrogen	bonds that a molecule of water can have is
	1) 1	2) 2
	3) 3	4) 4
72.	A gas deviates from ideal behaviour	at a high pressure because its molecules
	1) attract one another	2) show the Tyndall effect
	3) have kinetic energy	4) are bound by covalent bonds
73.	The reagent used to convert an alky	vne to alkene is
	1) Zn / HCl	2) Sn / HCl
	3) $Zn-Hg$ / HCl	4) Pd / H ₂
74.	When compared to ΔG^0 for the fe	ormation of Al_2O_3 , the ΔG^0 for the formation of
	Cr_2O_3 is	
	1) higher	2) lower
	3) same	4) unpredicted
75.	In order to increase the volume of a	gas by 10%, the pressure of the gas should be
	1) increased by 10 %	2) increased by 1 %
	3) decreased by 10 %	4) decreased by 1 %

76.	Catalyti	c dehydrogenation of a primary a	lcoho	ol gives a
	1)	secondary alcohol	2)	aldehyde
	3)	ketone	4)	ester
77.	Excess o	of ${PCl}_5$ reacts with conc. $H_2{SO}_4$ gi	ving	
	1)	chlorosulphonic acid	2)	thionyl chloride
	3)	sulphuryl chloride	4)	sulphurous acid
78.		ole of ammonia and one mole of h	C	gen chloride are mixed in a closed
	1)	$\Delta H > \Delta u$	2)	$\Delta H = \Delta u$
	3)	$\Delta H < \Delta u$	4)	there is no relationship
79.	The com	pound on dehydrogenation gives	a ket	tone. The original compound is
	1)	primary alcohol	2)	secondary alcohol
	3)	tertiary alcohol	4)	carboxylic acid
80.	Which is	the most easily liquifiable rare g	as?	
	1)	Xe	2)	Kr
	3)	Ar	4)	Ne
		(Space for Ro	ugh	Work)

81. Mesomeric effect involves delocalisation of					
	1)	pi electrons	2)	sigma electrons	
	3)	protons	4)	none of these	
82.	Which o	f the following has the maximum	num	ber of unpaired 'd' electrons?	
		Zn^{2+}		$Fe^{\dot{2}+}$	
	3)	Ni^{3+}	4)	Cu^+	
83.	One mol	e of which of the following has the	e hig	ghest entropy?	
	1)	liquid nitrogen	2)	hydrogen gas	
	3)	mercury	4)	diamond	
84.	Which o	f the following species does not ex	ert	a resonance effect ?	
	1)	$C_6H_5NH_2$		$C_6H_5\stackrel{+}{N}H_3$	
	. 3)	C_6H_5OH	4)	C_6H_5Cl	
85.	A compl	ex compound in which the oxidation	n n	umber of a metal is zero is	
	1)	$K_4[Fe(CN)_6]$	2)	$K_3[Fe(CN)_6]$	
	3)	$[Ni(CO)_4]$	4)	$\lceil Pl (NH_2), \rceil Cl_2$	

86.		t equilibrium the ve		I two moles of ${\it Cl}_2$ are taken in a closed bles of ${\it PCl}_5$, the number of moles of ${\it PCl}_3$
	79		2)	3
	3) 6		4)	4.5
87.	How many	optically active ster	eomers are pos	sible for butan-2, 3-diol?
	1) 1		2)	2
	3) 3		4)	4
88.	An octahed	Iral complex is forme	d when hybrid	orbitals of the following type are involved
	1) s ₁	p ³		$d sp^2$
	3) d	$^2sp^3$	4)	sp^2d^2
89.	For the rea	action $2HI_{(g)} \rightleftharpoons H_{2(g)}$	$I_{2(g)} + I_{2(g)} - Q KJ$, the equilibrium constant depends upon
	1) te	emperature	2)	pressure
	3) ca	atalyst	4)	volume
90.	The angle	strain in cyclobutane	is	
	1) 24	1044'	2)	29016'
	3) 19	$9^{0}22'$	4)	9 ⁰ 44'
-				

91.	The number	of nodal	planes	present in	σ^*s	antibonding	orbitals	is
-----	------------	----------	--------	------------	-------------	-------------	----------	----

1) 1

2)

3) (

4) 3

92. Which of the following electrolytic solutions has the least specific conductance?

1) 0.02 N

2) 0.2 N

3) 2 N

4) 0.002 N

93. The overlapping of orbitals in benzene is of the type

1) sp - sp

2) p - p

3) $sp^2 - sp^2$

4) $sp^3 - sp^3$

94. The calculated bond order of superoxide ion $\left(O_2^-\right)$ is

1) 2.5

2) 2

3) 1.5

4) 1

95. Which of the following can be measured by the Ostwald-Walker dynamic method?

- 1) Relative lowering of vapour pressure
- 2) Lowering of vapour pressure
- 3) Vapour pressure of the solvent
- 4) all of these

96. n-propyl bromide on treating with alcoholic KOH produces

	1)	propane	4)	propene
	3)	propyne	4)	propanol
97.	Mercury	y is a liquid metal because		
	1)	it has a completely filled s-orbit	tal	
	2)	it has a small atomic size		
	3)	it has a completely filled d-orbi	tal th	nat prevents d-d overlapping of orbitals
	4)	it has a completely filled d-orbi	tal th	nat causes d-d overlapping
98.	where t	the same of the sa	the c	. This crystallises in the cubic structurube and B atoms are at the body centre
	1)	AB	2)	A_6B
	3)	A_8B_4	4)	AB_6
99.	Anisole is called		meth	yl iodide on sodium phenate. The reactio
	1)	Wurtz's reaction	2)	Williamson's reaction
	3)	Fittig's reaction	4)	Etard's reaction
100.	Malleab	ility and ductility of metals can b	e acc	ounted due to
	1)	the presence of electrostatic for	ce	
	2)	the crystalline structure in met	al	
	3)	the capacity of layers of metal is	ons to	o slide over the other
	4)	the interaction of electrons with	met	al ions in the lattice
		(Space for R	ough	Work)

101. An ionic compound is expected to	have tetrahedral structure if r_+/r lies in the range of
1) 0.414 to 0.732	2) 0.225 to 0.414
3) 0.155 to 0.225	4) 0.732 to 1
102. Among the following, which is le	ast acidic ?
1) phenol	2) O-cresol
3) p-nitrophenol	4) p-chlorophenol
103. A ligand can also be regarded as	
1) Lewis acid	2) Bronsted base
3) Lewis base	4) Bronsted acid
104. The colour of sky is due to	
1) transmission of light	
2) wavelength of scattered	l light
3) absorption of light by a	tmospheric gases
4) All of these	
105. Which of the following organ Fehling's test?	ic compounds answers to both iodoform test and
1) ethanol	2) methanal
3) ethanal	4) propanone
(Spa	ace for Rough Work)

106. Helium is used in balloons in place of hydrogen because it is

1)	incombustible	2)	lighter than hydrogen
3)	radioactive	4).	more abundant than hydrogen
107. The bas	ic principle of Cottnell's precipit	ator i	s
1)	Le-chatelier's principle		And the last of th
2)	peptisation		The state of the s
3)	neutralisation of charge on col	loidal	particles
4)	scattering of light		
108. When ca	arbon monoxide is passed over so	olid ca	austic soda heated to 200°C, it forms
1)	Na_2CO_3	2)	$NaHCO_3$
3)	HCOONa	4)	CH_3COONa
	$I_2 \rightleftharpoons 2NH_3$ + heat. What is the sum of the reaction?	e effe	ct of the increase of temperature on the
1)		t	
2)	equilibrium is shifted to the rig		
3)	equilibrium is unaltered		
4)	reaction rate does not change		
110. Hydroge	n gas is not liberated when the	follow	ing metal is added to dil. HCl
1)	Ag	2)	Zn
3)	Mg	4)	Sn
	(Space for I	Rough	Work)

111. Consider the Born-Haber cycle for the formation of an ionic compound given below and identify the compound (Z) formed.

$$\begin{array}{|c|c|c|c|c|c|}\hline & M_{(s)} \xrightarrow{\Delta H_1} M_{(g)} \xrightarrow{\Delta H_2} M_{(g)}^+ \\ & \frac{1}{2} X_{2(g)} \xrightarrow{\Delta H_3} X_{(g)} \xrightarrow{\Delta H_4} X_{(g)}^- \end{array} \xrightarrow{\Delta H_5} Z$$

1) M+X-

2) $M^{-}X_{(s)}^{-}$

 $3) \cdot MX$

- 4) $M^+X_{(g)}^-$
- 112. In the brown ring test, the brown colour of the ring is due to
 - 1) ferrous nitrate

- 2) ferric nitrate
- 3) a mixture of NO and NO2
- 4) nitrosoferrous sulphate

- 113. Amines behave as
 - 1) Lewis acids

2) Lewis base

3) aprotic acid

- 4) neutral compound
- 114. Dalda is prepared from oils by
 - 1) oxidation

2) reduction

3) hydrolysis

- 4) distillation
- 115. The chemical name of anisole is
 - 1) Ethanoic acid

2) Methoxy benzene

3) Propanone

4) Acetone

1	16.	The	number	of	disulphide	linkages	present	in	insulin	are
	IU.	THE	Humber	UI	uibuipilluc	minacos	DICOCIIO	LLL	mount	auc

1) 1

2)

3) 3

4) 4

117. 80 g of oxygen contains as many atoms as in

1) 80 g of hydrogen

2) 1 g of hydrogen

3) 10 g of hydrogen

4) 5 g of hydrogen

118. Which metal has a greater tendency to form metal oxide?

1) Cr

3) Al 4) Ca

119. Identify the reaction that does not take place in a blast furnace.

- 1) $CaCO_3 \longrightarrow CaO + CO_2$ 2) $CaO + SiO_2 \longrightarrow CaSiO_3$
- 3) $2Fe_2O_3 + 3C \longrightarrow 4Fe + 3CO_2$ 4) $CO_2 + C \longrightarrow 2CO$

120. Waxes are esters of

- 1) glycerol
- 2) long chain alcohols
- 3) glycerol and fatty acid
- 4) long chain alcohols and long chain fatty acids