N 926

Seat No. 2111683

2023 III 15 1100 - N 926- MATHEMATICS (71) GEOMETRY-PART II (E)

(REVISED COURSE)

Time: 2 Hours

(Pages 11)

Max. Marks: 40

Note :_

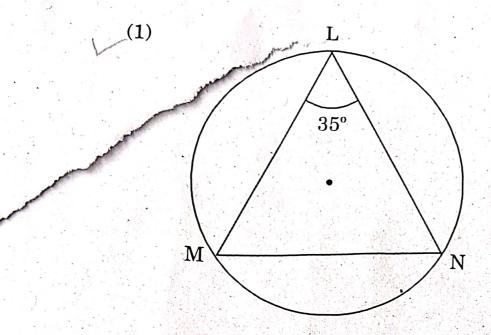
- (i) All questions are compulsory.
- (ii) Use of calculator is not allowed.
- (iii) The numbers to the right of the questions indicate full marks.
- (iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
- (v) For every MCQ, the correct alternative (A), (B), (C) or (D) with sub-question number is to be written as an answer.
- (vi) Draw the proper figures for answers wherever necessary.
- (vii) The marks of construction should be clear and distinct. Do not erase them.
- (viii) Diagram is essential for writing the proof of the theorem.

(A) Four alternative answers are given for every subquestion.

Select the correct alternative and write the alphabet of that answer:

- (1) If a, b, c are sides of a triangle and $a^2 + b^2 = c^2$, name the type of triangle :
 - (A) Obtuse angled triangle
 - (B) Acute angled triangle
 - (C) Right angled triangle
 - (D) Equilateral triangle
- (2) Chords AB and CD of a circle intersect inside the circle at point

E. If AE = 4, EB = 10, CE = 8, then find ED:


- (A) 7
- (B) 5
- (C) 8
- (D) 9

- (3) Co-ordinates of origin are
 - (A) (0, 0)
 - (B) (0, 1)
 - (C) (1, 0)
 - (D) (1, 1)
- (4) If radius of the base of cone is 7 cm and height is 24 cm, then find its slant height:
 - (A) 23 cm
 - (B) 26 cm
 - (C) 31 cm
 - (D) 25 cm
- (B) Solve the following sub-questions:
 - (1) If \triangle ABC ~ \triangle PQR and $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{16}{25}$, then find AB : PQ.
 - (2) In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm, then find RS.
 - (3) If radius of a circle is 5 cm, then find the length of longest chord of a circle.
 - (4) Find the distance between the points O(0, 0) and P(3, 4).

4

4

2. (A) Complete the following activities (any two):

In the above figure, $\angle L = 35^{\circ}$, find:

- (i) m (arc MN)
- (ii) m (arc MLN)

Solution:

(i) $\angle L = \frac{1}{2} m \text{ (arc MN)}........... (By inscribed angle theorem)}$

$$\therefore \qquad \boxed{} = \frac{1}{2} m (\text{arc MN})$$

$$2 \times 35 = m(\text{arc MN})$$

$$m(\text{arc MN}) =$$

$$m(\text{arc MLN}) = \boxed{-m(\text{arc MN}) \dots}$$

[Definition of measure of arc]

$$= 360^{\circ} - 70^{\circ}$$

.
$$m(\text{arc MLN}) =$$

(2) Show that, $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$

Solution:

L.H.S. = $\cot \theta + \tan \theta$

$$= \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\boxed{1} + \boxed{1}}{\sin \theta \times \cos \theta}$$

$$= \frac{1}{\sin\theta \times \cos\theta} - \frac{\cos\theta}{\cos\theta} \int \cos\theta + \sin\theta = \frac{1}{\cos\theta} \int \cos\theta + \sin\theta = \frac{1}{\cos\theta}$$

$$= \frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$$

 $= \csc \theta \times \sec \theta$

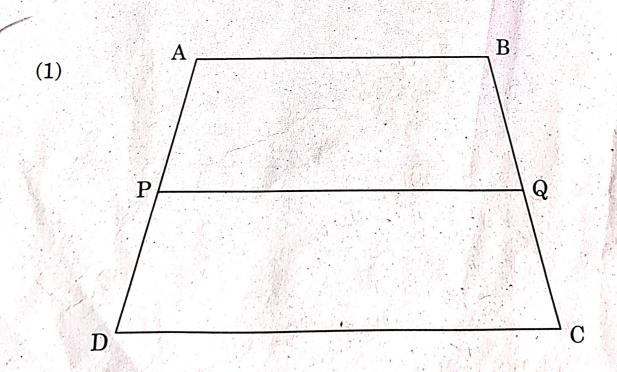
$$L.H.S. = R.H.S.$$

$$\cot \theta + \tan \theta = \csc \theta \times \sec \theta$$
.

(3) Find the surface area of a sphere of radius 7 cm.

Solution:

Surface area of sphere = $4\pi r^2$

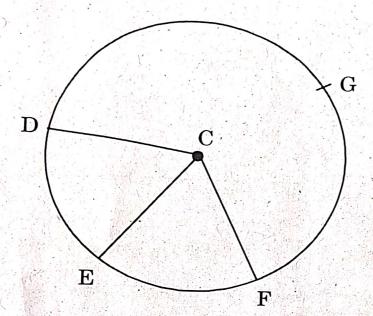

$$= 4 \times \frac{22}{7} \times \left[\frac{1}{7} \right]^{2}$$

$$= 4 \times \frac{22}{7} \times \left[\frac{1}{4} \right]$$

$$= 88 \times 7$$

: Surface area of sphere = 616 sq.cm.

(B) Solve the following sub-questions (Any four):


In trapezium ABCD side AB || side PQ || side DC. AP = 15.

PD = 12, QC = 14, find BQ.

8

(2) Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

(3)

In the given figure points G, D, E, F are points of a circle with centre C, \angle ECF = 70°, m (arc DGF) = 200°.

Find:

- (i) m (arc DE)
- (ii) m (arc DEF).
- (4) Show that points A(-1, -1), B(0, 1), C(1, 3) are collinear.
- (5) A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°, Find the height of the temple.

(A) Complete the following activities (any one):

 $\begin{array}{c} P \\ X \\ \hline \\ O \\ \hline \end{array}$

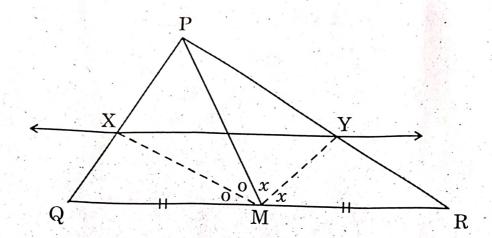
In \triangle PQR, seg PM is a median. Angle bisectors of \angle PMQ and \angle PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY \parallel QR.

Complete the proof by filling in the boxes.

Solution:

3.

In \triangle PMQ,


Ray MX is the bisector of ∠PMQ

Similarly, in △ PMR, Ray MY is bisector of ∠PMR

$$\frac{MP}{MR} = \boxed{}$$
 (II) [Theorem of angle bisector]

(A) Complete the following activities (any one):

(1)

In △ PQR, seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively. Prove that XY || QR.

Complete the proof by filling in the boxes.

Solution:

In \triangle PMQ,

Ray MX is the bisector of ∠PMQ

$$\frac{MP}{MQ} = \frac{\boxed{}}{\boxed{}}$$
(I) [Theorem of angle bisector]

Similarly, in △ PMR, Ray MY is bisector of ∠PMR

$$\frac{MP}{MR} = \frac{1}{1}$$
 (II) [Theorem of angle bisector]

But
$$\frac{MP}{MQ} = \frac{MP}{MR}$$
 (III) [As M is the midpoint of QR]

Hence MQ = MR

$$\frac{PX}{\boxed{}} = \frac{\boxed{}}{YR} \qquad [From (I), (II) and (III)]$$

: XY || QR [Converse of basic proportionality theorem]

(2) Find the co-ordinates of point P where P is the midpoint of a line segment AB with A(-4, 2) and B(6, 2).

Solution:

Suppose, $(-4, 2) = (x_1, y_1)$ and $(6, 2) = (x_2, y_2)$ and co-ordinates of P are (x, y)

: According to midpoint theorem,

$$x = \frac{x_1 + x_2}{2} = \frac{\boxed{} + 6}{2} = \boxed{}$$

$$y = \frac{y_1 + y_2}{2} = \frac{2 + \boxed{2}}{2} = \frac{4}{2} = \boxed{2}$$

· Co-ordinates of midpoint P are

(B) Solve the following sub-questions (any two):

6

5.

- (1) In \triangle ABC, seg AP is a median. If BC = 18, AB² + AC² = 260, find AP.
- (2) Prove that, "Angles inscribed in the same arc are congruent."
- (3) Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at points P and Q.
 - (4) The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm. Find its curved surface area. $(\pi = 3.14)$

4. Solve the following sub-questions (any two):


8

- (1) In \triangle ABC, seg DE || side BC. If $2A(\triangle ADE) = A(\square DBCE)$, find AB : AD and show that $BC = \sqrt{3} DE$.
- (2) Δ SHR ~ Δ SVU. In Δ SHR, SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and $\frac{SH}{SV} = \frac{3}{5}$, construct Δ SVU.
- (3) An ice-cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm. This pot is completely filled with ice-cream. The entire ice-cream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height is 3.5 cm. If each student is given one cone, how many students can be served?

Solve the following sub-questions (Any one):

3

A circle touches side BC at point P of the \triangle ABC, from out-side of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that :

$$AM = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)

(2) Eliminate θ if $x = r \cos \theta$ and $y = r \sin \theta$.