Maximum Marks: 40
Time allowed: $\mathbf{2}$ Hours
Note:-
(i) All questions are compulsory.
(ii) Use of calculator is not allowed.
(iii) The numbers to the right of the questions indicate full marks.
(iv) In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit.
(v) For every MCQ, the correct alternative (A), (B), (C) or (D) with: sub-question number is to be written as an answer.
(vi) Draw the proper figures for answers wherever necessary.
(vii) The marks of construction should be clear and distinct. Do not erase them.
(viii) Diagram is essential for writing the proof of the theorem,

Question 1

A. Four alternative answers are given for every subquestion, Select the correct alternative and write the alphabet of that answer :
(1) If a, b, c are sides of a triangle and $a^{2}+b^{2}=c^{2}$, name the type of triangle :
(A) Obtuse angled triangle
(B) Acute angled triangle
(C) Right angled triangle
(D) Equilateral triangle

Answer: (C) Right angled triangle

Explanation:

In a triangle, if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is right angled triangle.

Maharashtra Board - II (X) Mathematics 2022-23

Hence, the correct option is the Right angled triangle.
(2) Chords $A B$ and $C D$ of a circle intersect inside the circle at point E . If $A E=$ $4, E B=10, C E=8$, then find $E D$:
(A) 7
(B) 5
(C) 8
(D) 9

Answer: B Explanation:

$$
A E \times E B=C E \times E D
$$

Plugging in the given values, we get:

$$
4 \times 10=8 \times E D
$$

Simplifying, we get:

$$
40=8 \times E D
$$

$E D=5$
(3) Co-ordinates of origin are \qquad
(A) $(0,0)$
(B) $(0,1)$
(C) $(1,0)$
(D) $(1,1)$

Answer: A

Explanation:

The coordinates of the origin are $(0,0)$.
(4) If radius of the base of cone is 7 cm and height is 24 cm , then find its slant height :
(A) 23 cm
(B) 26 cm
(C) 31 cm
(D) 25 cm

Answer: D
Explanation: The slant height of a cone can be calculated using the Pythagorean theorem, which states that the square of the slant height is equal to the sum of the square of the radius and the square of the height.
So, slant height $=\sqrt{\text { radius }^{2}+\text { height }^{2}}$
Substituting the given values, we get:
slant height $=\sqrt{7^{2}+24^{2}}$
slant height $=\sqrt{49+576}$
slant height $=\sqrt{625}$
slant height $=25 \mathrm{~cm}$
Therefore, the answer is option (D) 25 cm .
B. Solve the following sub-questions:

1. If $\triangle A B C \sim \triangle P Q R$ and $\frac{A(\triangle A B C)}{A(\triangle P Q R)}=\frac{16}{25^{\prime}}$, then find $A B: P Q$.

Answer: 4:5

Explanation:

$$
\begin{aligned}
& \frac{A(\triangle A B C)}{A(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}} \\
& \frac{16}{25}=\frac{A B^{2}}{P Q^{2}} \\
& \frac{A B}{P Q}=\sqrt{\frac{16}{25}} \\
& \frac{A B}{P Q}=\frac{4}{5} \\
& \therefore A B: P Q=4: 5
\end{aligned}
$$

2. In $\triangle R S T, \angle S=90^{\circ}, \angle T=30^{\circ}, R T=12 \mathrm{~cm}$, then find RS.

Answer: 6 cm

Explanation:

$\sin 30^{\circ}=\frac{R S}{R T}$
$\frac{1}{2}=\frac{R S}{12}$
$\therefore R S=6 \mathrm{~cm}$
3. If radius of a circle is 5 cm , then find the length of longest chord of a circle.

Answer: 10 cm

Explanation:

The longest chord of a circle is the diameter of the circle.
\therefore Diameter $=2 \times$ Radius

$$
\begin{aligned}
& =2 \times 5 \\
& =10 \mathrm{~cm}
\end{aligned}
$$

\therefore Diameter $=10 \mathrm{~cm}$
4. Find the distance between the points $O(0,0)$ and $P(3,4)$.

Answer: 5 units

Explanation:

Distance between a point and origin $=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{9+16} \\
& =\sqrt{25} \\
& =5 \text { units }
\end{aligned}
$$

\therefore The distance $\mathrm{b} / \mathrm{w} 2$ points is 5 units.

Question 2

A. Complete the following activities (any two):
1.

In the above figure, $\angle L=35^{\circ}$, find:
(i) $m(\operatorname{arc} M N)$
(ii) $m(\operatorname{arc} M L N)$

Explanation:

(i) $\angle L=\frac{1}{2} m(\operatorname{arc} M N) \ldots \ldots \ldots$ (By inscribed angle theorem)

$$
\therefore 35=\frac{1}{2} m(\operatorname{arc} M N) \quad \therefore 2 \times 35=m(\operatorname{arc} M N) \quad \therefore m(\operatorname{arc} M N)=70^{\circ}
$$

(ii) $m(\operatorname{arc} M L N)=360^{\circ}-m(\operatorname{arc} M N)$
.[Definition of measure of arc]

$$
=360^{\circ}-70^{\circ}
$$

$\therefore m(\operatorname{arc} M L N)=290^{\circ}$
2. Show that, $\cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta$

Explanation:

$$
\begin{aligned}
& \text { L.H.S. }=\cot \theta+\tan \theta=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{\sin ^{2} \theta+\theta}{\sin \theta \times \cos \theta} \\
& =\frac{1}{\sin \theta \times \cos \theta} \ldots \ldots \ldots \ldots\left(\sin ^{2} \theta+\theta=1\right)
\end{aligned}
$$

$$
=\frac{1}{\sin \theta} \times \frac{1}{\cos \theta}
$$

$$
=\operatorname{cosec} \theta \times \sec \theta \text { L.H.S. }=\text { R.H.S. }
$$

$$
\therefore \cot \theta+\tan \theta=\operatorname{cosec} \theta \times \sec \theta
$$

3. Find the surface area of a sphere of radius 7 cm .

Answer: 616 sq.cm.

Explanation:

Surface area of sphere $=4 \pi r^{2}$

$$
=4 \times \frac{22}{7} \times 7^{2}=4 \times \frac{22}{7} \times 49=88 \times 7
$$

\therefore Surface area of sphere $=616$ sq.cm.

B. Solve the following sub-questions (any four)

1. In trapezium $A B C D$ side $A B \|$ side $P Q \|$ side $D C . A P=15$

$$
P D=12, Q C=14, \text { find } B Q
$$

Answer: 17.5

Explanation: According to property of three parallel lines and their transversals if $A B\|P Q\| D C$ then -

$$
\frac{A P}{P D}=\frac{B Q}{Q C} \frac{15}{12}=\frac{B Q}{14} B Q=17.5
$$

2. Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm .

Answer: 37 cm

Explanation:

According to Pythagoras theorem, in $\triangle A B C$

$$
\begin{aligned}
& A B^{2}+B C^{2}=A C^{2} \\
& \Rightarrow 35^{2}+12^{2}=A C^{2} \\
& \Rightarrow 1225+144=A C^{2} \\
& \Rightarrow A C^{2}=1369 \\
& \Rightarrow A C=37 \mathrm{~cm}
\end{aligned}
$$

Hence, the length of the diagonal is 37 cm .
3. In the given figure points G, D, E, F are points of a circle with centre $C, \angle E C F=$ $70^{\circ}, m(\operatorname{arc}$ DGF $)=200^{\circ}$.
Find :
(i) $m(\operatorname{arc} D E)$
(ii) m (arc DEF).

Answer: 90° and 160°

Explanation:

$$
\begin{gathered}
\text { (i) } m(\operatorname{arc} D E)=360^{\circ}-[m(\operatorname{arc} D G F)+m(\operatorname{arcECF})] \\
m(\operatorname{arc} D E)=360^{\circ}-\left[200^{\circ}+70^{\circ}\right] \\
m(\operatorname{arc} D E)=90^{\circ}
\end{gathered}
$$

(ii) $m(\operatorname{arc} D E F)=m(\operatorname{arc} D E)+m(\operatorname{arc} E F)$

$$
\begin{gathered}
m(\operatorname{arc} D E F)=90^{\circ}+70^{\circ} \\
m(\operatorname{arc} D E F)=160^{\circ}
\end{gathered}
$$

4. Show that points $A(-1,-1), B(0,1), C(1,3)$ are collinear.

Explanation:

$A(-1,-1), B(0,1), C(1,3)$

Slope of $A B=\frac{1-(-1)}{0-(-1)}=\frac{2}{1}=2$
Slope of $B C=\frac{3-1}{1-0}=\frac{2}{1}=2$
Slope of $A B=$ Slope of $B C=2$
Thus, the given points are collinear.
5. A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°, Find the height of the temple.

Answer: $50 \sqrt{2} m$

Explanation:

Let $A B C$ be the triangle right angled at B and angle C be 45°.
Given that, $B C=50 \mathrm{~m}$
To find, $A B$ (height).

$$
\cos \cos 45^{\circ}=\frac{B C}{A B}
$$

$$
\frac{1}{\sqrt{2}}=\frac{50}{A B}
$$

$\therefore A B=50 \sqrt{2} \mathrm{~m}$
\therefore Height of the temple $=50 \sqrt{2} \mathrm{~m}$

Question 3.

A. Complete the following activities (any one):
1.

In $\triangle P Q R$, seg $P M$ is a median. Angle bisectors of $\angle P M Q$ and $\angle P M R$ intersect side $P Q$ and side $P R$ in points X and Y respectively. Prove that $X Y \| Q R$.
Complete the proof by filling in the boxes.

Explanation:

In $\triangle P M Q$,
Ray MX is the bisector of $\angle P M Q$
$\therefore \frac{M P}{M Q}=\frac{X Q}{P X}$
(I) [Theorem of angle bisector]

Similarly, in $\triangle P M R$, Ray $M Y$ is bisector of $\angle P M R$
$\therefore \frac{M P}{M R}=\frac{Y R}{P Y}$
(II) [Theorem of angle bisector]

But $\frac{M P}{M Q}=\frac{M P}{M R}$ \qquad (III) [As M is the midpoint of QR]

Hence $M Q=M R$
$\therefore \frac{P X}{X Q}=\frac{P Y}{Y R}$
[From (I), (II) and (III)]
$\therefore X Y \| Q R \ldots \ldots \ldots$ [Converse of basic proportionality theorem]
2. Find the coordinates of point P where P is the midpoint of a line segment $A B$ with $A(-4,2)$ and $B(6,2)$.

Answer: (1, 2)

Explanation:

Suppose, $(-4,2)=\left(x_{1}, y_{1}\right)$ and $(6,2)=\left(x_{2}, y_{2}\right)$ and co-ordinates of P are (x, y)
\therefore According to midpoint theorem,

$$
\begin{aligned}
& x=\frac{x_{1}+x_{2}}{2}=\frac{-4+6}{2}=\frac{2}{2}=1 \\
& y=\frac{y_{1}+y_{2}}{2}=\frac{2+2}{2}=\frac{4}{2}=2
\end{aligned}
$$

\therefore Co-ordinates of midpoint P are $(1,2)$.
B. Solve the following sub-questions (any two) :

1. In $\triangle A B C$, seg $A P$ is a median. If $B C=18, A B^{2}+A C^{2}=260$, find AP .

Answer: 7 cm

Explanation:

$$
\begin{gathered}
A B^{2}+A C^{2}=2 A P^{2}+2 B P^{2}(\text { by Apollonius theorem }) \\
\Rightarrow 260=2 A P^{2}+2\left(9^{2}\right) \\
\Rightarrow 260=2 A P^{2}+2(81) \\
\Rightarrow 260=2 A P^{2}+162 \\
\Rightarrow 2 A P^{2}=260-162 \\
\Rightarrow 2 A P^{2}=98 \\
\Rightarrow A P^{2}=49 \\
\Rightarrow A P=7
\end{gathered}
$$

2. Prove that, "Angles inscribed in the same arc are congruent."

Explanation:

Proof: -

$$
\begin{gathered}
\left.m \angle P Q R=\frac{1}{2} m(\text { are } P \times R)-(i) \quad \text { (inscribed angle theorem }\right) \\
m \angle P S R=\frac{1}{2} m(\operatorname{arc} P X R)-(i)(\text { Inscribed angle theorem }) \\
\therefore m \angle P Q R=m \angle P S R-[\text { form }(i) \&(i i)]
\end{gathered}
$$

$\therefore \angle P Q R \cong \angle P S R$. (Angles equal in measure are congruent).
3. Draw a circle of radius 3.3 cm . Draw a chord PQ of length 6.6 cm . Draw tangents to the circle at points P and Q.

Explanation:

Steps of Construction:
Step 1: Draw a circle with radius 3.3 cm . Mark any point P on it.
Step 2: Draw chord $P Q=6.6 \mathrm{~cm}$ (PQ is the diameter of the circle).

Step 3: Draw rays $C X$ and $C Y$.
Step 4: Draw line I perpendicular to ray $C X$ through point P.
Step 4: Draw line m perpendicular to ray $C Y$ through point Q.
Here, line I and line m are the required tangents to the circle at points P and Q, respectively. It can be observed that the tangents I and m are parallel to each other.
4. The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm . Find its curved surface area. $(\pi=3.14)$

Answer: 628 sq. cm

Explanation:

Here, $r_{1}=14 \mathrm{~cm}, r_{2}=6 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$.
Slant height of the frustum, $I=\left[\sqrt{h^{2}+\left(r_{2}-r_{1}\right)^{2}}=\sqrt{6^{2}+(14-6)^{2}}=\sqrt{6^{2}+8^{2}}=\right.$ $\sqrt{36+64}=\sqrt{100}]=10 \mathrm{~cm}$
Curved surface area of frustum $=\pi\left(r_{1}+r_{2}\right) l$

$$
\begin{gathered}
=3.14 \times(14+6) \times 10 \\
=3.14 \times 20 \times 10 \\
=628 \mathrm{~cm}^{2}
\end{gathered}
$$

\therefore The curved surface area of frustum is $628 \mathrm{sq} . \mathrm{cm}$

Question 4. Solve the following sub-questions (any two):

1. In $\triangle A B C$, seg $D E \|$ side BC . If $2 A(\triangle A D E)=A(\square D B C E)$, find $A B: A D$ and show that $B C=\sqrt{3} D E$.

Explanation:

Given:
In $\triangle A B C$, segment $D E \|$ side $B C$

$$
2 A(\triangle A D E)=A(D B C E)
$$

To Find:

$$
B C=\sqrt{3} \times D E
$$

Solution:
Since $D E$ is parallel to $B C$
In $\triangle A D E$ and $\triangle A B C$,
$\angle A$ is common
The corresponding angles of a triangle are equal

$$
\therefore \angle A D E=\angle A B C
$$

So, $\triangle A D E$ is similar to $\triangle A B C$ by AA similarity criteria.

$$
\begin{equation*}
\therefore \frac{A D}{A B}=\frac{D E}{B C}=\frac{A E}{A C} \text {. } \tag{1}
\end{equation*}
$$

Then,

$$
\frac{A(\text { triangle } A D E)}{A(\text { triangle } A B C)}=\frac{A D^{2}}{A B^{2}}=\frac{D E^{2}}{B C^{2}}=\frac{A E^{2}}{A C^{2}} . .(I I)
$$

Also, $2 A(\triangle A D E)=A(D B C E)$..(III) [given]
Since, $A(\triangle A B C)=A(\triangle A D E)+A(D B C E)$

$$
\begin{gathered}
A(\triangle A B C)=A(\triangle A D E)+2 A(\triangle A D E) \\
\therefore A(\triangle A B C)=3 A(\triangle A D E)
\end{gathered}
$$

$\frac{A(\text { triangle } A D E)}{A(\text { triangle } A B C)}=\frac{1}{3}$
Using (II) and (III), we get

$$
\frac{A D^{2}}{A B^{2}}=\frac{D E^{2}}{B C^{2}}=\frac{1}{3}
$$

$\therefore \frac{A D^{2}}{B D^{2}}=\frac{1}{3}$ and $\frac{D E^{2}}{B C^{2}}=\frac{1}{3}$
$\frac{A D}{B D}=\frac{1}{\sqrt{3}} \cdot(v)$ and $\frac{D E}{B C}=\frac{1}{\sqrt{3}} \cdot(\mathrm{v})$

Now, by applying Inverted In (v)

We get,
$\frac{A B}{B D}=\sqrt{3}$ and
Using equation (v), we get

$$
B C=\sqrt{3} \times D E
$$

Hence proved.
2. $\triangle S H R \sim \triangle S V U$. In $\triangle S H R, S H=4.5 \mathrm{~cm}, H R=5.2 \mathrm{~cm}, S R=5.8 \mathrm{~cm}$ and $\frac{S H}{S V}=\frac{3}{5}$, construct $\triangle S V U$.

Explanation:

Steps of Construction:
1 Construct the \triangle SHR with the given measurements. For this draw $S H$ of length 4.5 cm .
2 Taking S as the center and radius equal to 5.8 cm draw an arc above $S H$.
3 Taking H as the center and radius equal to 5.2 cm draw an arc to intersect the previous arc. Name the point of intersection as R.
4 Join SR and HR. \triangle SHR with the given measurements is constructed. Extend SH and SR further on the right side.
5 Draw any ray SX making an acute angle (i.e; 45°) with $S H$ on the side opposite to the vertex R.
6 Locate 5 points. (the ratio of old triangle to new triangle is $3 / 5$ and $5>3$). Locate $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} on $A X$ so that $S A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=$ $A_{4} A_{5}$

Maharashtra Board - II (X) Mathematics

7 Join $A_{3} H$ and draw a line through A_{5} parallel to $A_{3} H_{1}$, intersecting the extended part of $S H$ at V.

8 Draw a line VU through V parallel to $H R$. $\triangle S V U$ is the required triangle.
3. An ice cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm . This pot is completely filled with ice-cream. The entire ice cream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height is 3.5 cm . If each student is given one cone, how many students can be served?

Answer: 647 students

Explanation:

Volume of ice cream in the cylindrical pot $=\pi \times(\text { radius })^{2} \times($ height $)$

$$
=\pi\left(12 \mathrm{~cm}^{2}\right)(7 \mathrm{~cm})=3,024 \pi \mathrm{~cm}^{3}
$$

Volume of one ice-cream cone $=1 / 3 \pi$ (radius) ${ }^{2}$ (height)

$$
\begin{aligned}
& =1 / 3 \pi(2 \mathrm{~cm})^{2}(3.5 \mathrm{~cm}) \\
& =4.67 \pi \mathrm{~cm}^{3} \text { (Rounded to two decimal places) }
\end{aligned}
$$

Number of cones that can be filled with the ice-cream in the pot $=$ (Volume of icecream in the cylindrical pot) \div (Volume of one ice-cream cone)

$$
\begin{aligned}
& =\left(3,024 \pi \mathrm{~cm}^{3}\right) \div\left(4.67 \pi \mathrm{~cm}^{3}\right) \\
& =647.46 \text { (Rounded to two decimal places) }
\end{aligned}
$$

Therefore, 647 students can be served with one cone each. Note that this is an approximation and assumes that no ice cream is lost or wasted in the process of filling the cones.

Question 5. Solve the following sub-questions (anyone):
1.

A circle touches side $B C$ at point P of the $\triangle A B C$, from out-side of the triangle. Further extended lines $A C$ and $A B$ are tangents to the circle at N and M respectively. Prove that :

$$
A M=\frac{1}{2}(\text { Perimeter of } \triangle A B C)
$$

Explanation:

Lengths of Δ drawn from an external pt to a circle are equal.

$$
\begin{gathered}
\Rightarrow A M=A N, B M=B P, C P=C N+(A N-C N) \\
\text { Perimeter of } \triangle A B C=A B+B C+C A \\
=A B+(B P+P C) \\
=(A B+B M)+P C+(A M-P C) \\
=A M+A M=2 A M \\
A M=\frac{1}{2}(\text { perimeter of } \triangle A B C)
\end{gathered}
$$

2. Eliminate θ if $x=r \cos \theta$ and $y=r \sin \theta$.

Explanation:

$$
x=r \cos \theta, y=r \sin \theta
$$

Squaring on both term

$$
\begin{align*}
& x^{2}=r^{2} \cos ^{2} \theta, \tag{1}\\
& y^{2}=r^{2} \sin ^{2} \theta \tag{2}
\end{align*}
$$

Add (1) + (2)

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \sin ^{2} \theta+r^{2} \cos ^{2} \theta \\
x^{2}+y^{2}=r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)
\end{gathered}
$$

But we know $\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=1$

$$
\therefore x^{2}+y^{2}=r^{2}
$$

