

EXERCISE 8.2

1. Evaluate the following:

- (i) sin 60° cos 30° + sin 30° cos 60°
- (ii) $2 \tan^2 45^\circ + \cos^2 30^\circ \sin^2 60$

(iii)
$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}}$$

 $(iv)\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$

$$(\mathbf{v})\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$$

Solution:

(i) $\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ$

First, find the values of the given trigonometric ratios

 $\sin 30^{\circ} = 1/2$

 $\cos 30^\circ = \sqrt{3/2}$

 $\sin 60^{\circ} = 3/2$

 $\cos 60^{\circ} = 1/2$

Now, substitute the values in the given problem

 $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ} = \sqrt{3/2} \times \sqrt{3/2} + (1/2) \times (1/2) = 3/4 + 1/4 = 4/4 = 1$

(ii) $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60$

We know that, the values of the trigonometric ratios are:

 $\sin 60^{\circ} = \sqrt{3/2}$

 $\cos 30^\circ = \sqrt{3/2}$

tan 45° = 1

Substitute the values in the given problem

 $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60 = 2(1)^2 + (\sqrt{3}/2)^2 - (\sqrt{3}/2)^2$

 $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60 = 2 + 0$

 $2 \tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60 = 2$

(iii) cos 45°/(sec 30°+cosec 30°)

We know that,

 $\cos 45^\circ = 1/\sqrt{2}$

https://byjus.com

PAGE: 187

sec $30^{\circ} = 2/\sqrt{3}$

 $\cos c 30^\circ = 2$

Substitute the values, we get

$$\frac{\cos 45^{\circ}}{\sec 30^{\circ} + \csc 30^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}} + 2} = \frac{\frac{1}{\sqrt{2}}}{\frac{2+2\sqrt{3}}{\sqrt{3}}}$$
$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2+2\sqrt{3}}$$
$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2(1+\sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2}(1+\sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2}(\sqrt{3}+1)}$$
Now, rationalize the terms we get,

 $=\frac{\sqrt{3}}{2\sqrt{2}(\sqrt{3}+1)}\times\frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3-\sqrt{3}}{2\sqrt{2}(3-1)}=\frac{3-\sqrt{3}}{2\sqrt{2}(2)}$

Now, multiply both the numerator and denominator by $\sqrt{2}$, we get

$$= \frac{3-\sqrt{3}}{2\sqrt{2}(2)} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2}-\sqrt{3}\sqrt{2}}{8} = \frac{3\sqrt{2}-\sqrt{6}}{8}$$

Therefore, $\cos 45^{\circ}/(\sec 30^{\circ} + \csc 30^{\circ}) = (3\sqrt{2} - \sqrt{6})/8$

$$(iv)\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$$

We know that,

 $\sin 30^{\circ} = 1/2$

tan 45° = 1

 $\csc 60^{\circ} = 2/\sqrt{3}$

 $\sec 30^\circ = 2/\sqrt{3}$

 $\cos 60^{\circ} = 1/2$

cot 45° = 1

Substitute the values in the given problem, we get

$\frac{\sin 30^{\circ} + \tan 45^{\circ} - \csc 60^{\circ}}{\sec 30^{\circ} + \cos 60^{\circ} + \cot 45^{\circ}} = \frac{\frac{1}{2} + 1 - \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1} = \frac{\frac{\sqrt{3} + 2\sqrt{3} - 4}{2\sqrt{3}}}{\frac{4 + \sqrt{3} + 2\sqrt{3}}{2\sqrt{3}}}$ Now, cancel the term $2\sqrt{3}$, in numerator and denominator, we get $= \frac{\sqrt{3} + 2\sqrt{3} - 4}{4 + \sqrt{3} + 2\sqrt{3}} = \frac{3\sqrt{3} - 4}{3\sqrt{3} + 4}$ Now, rationalize the terms $= \frac{3\sqrt{3} - 4}{3\sqrt{3} + 4} \times \frac{3\sqrt{3} - 4}{3\sqrt{3} - 4}$
$\frac{27 - 12\sqrt{3} - 12\sqrt{3} + 16}{27 - 12\sqrt{3} + 12\sqrt{3} + 16} = \frac{27 - 24\sqrt{3} + 16}{11} = \frac{43 - 24\sqrt{3}}{11}$ Therefore, $\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ} = \frac{43 - 24\sqrt{3}}{11}$
$(v)\frac{5\cos^2 60^\circ + 4\sec^2 30^\circ - \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$
We know that,
$\cos 60^{\circ} = 1/2$
$\sec 30^\circ = 2/\sqrt{3}$
tan 45° = 1
sin 30° = 1/2
$\cos 30^\circ = \sqrt{3/2}$
Now, substitute the values in the given problem, we get
(5cos ² 60° + 4sec ² 30° - tan ² 45°)/(sin ² 30° + cos ² 30°)
$= 5(1/2)^2 + 4(2/\sqrt{3})^2 - \frac{1^2}{(1/2)^2} + (\sqrt{3}/2)^2$
= (5/4+16/3-1)/(1/4+3/4)
= (15+64-12)/12/(4/4)
= 67/12
2. Choose the correct option and justify your choice : (i) $2\tan 30^{\circ}/1 + \tan^{2}30^{\circ} =$ (A) $\sin 60^{\circ}$ (B) $\cos 60^{\circ}$ (C) $\tan 60^{\circ}$ (D) $\sin 30^{\circ}$ (ii) $1 - \tan^{2}45^{\circ}/1 + \tan^{2}45^{\circ} =$ (A) $\tan 90^{\circ}$ (B) 1 (C) $\sin 45^{\circ}$ (D) 0 (iii) $\sin 2A = 2 \sin A$ is true when $A =$ (A) 0° (B) 30° (C) 45° (D) 60°
(iv) $2\tan 30^{\circ}/1 - \tan^{2} 30^{\circ} =$ (A) $\cos 60^{\circ}$ (B) $\sin 60^{\circ}$ (C) $\tan 60^{\circ}$ (D) $\sin 30^{\circ}$

Solution:

(i) (A) is correct.

Substitute the of tan 30° in the given equation

 $\tan 30^{\circ} = 1/\sqrt{3}$

2tan 30°/1+tan²30° = $2(1/\sqrt{3})/1+(1/\sqrt{3})^2$

$$= (2/\sqrt{3})/(1+1/3) = (2/\sqrt{3})/(4/3)$$

 $= 6/4\sqrt{3} = \sqrt{3}/2 = \sin 60^{\circ}$

The obtained solution is equivalent to the trigonometric ratio sin 60°

(ii) (D) is correct.

Substitute the of tan 45° in the given equation

tan 45° = 1

 $1-\tan^2 45^\circ/1+\tan^2 45^\circ = (1-1^2)/(1+1^2)$

$$= 0/2 = 0$$

The solution of the above equation is 0.

(iii) (A) is correct.

To find the value of A, substitute the degree given in the options one by one

```
\sin 2A = 2 \sin A is true when A = 0^{\circ}
```

As $\sin 2A = \sin 0^\circ = 0$

 $2 \sin A = 2 \sin 0^\circ = 2 \times 0 = 0$

or,

Apply the sin 2A formula, to find the degree value

 $\sin 2A = 2\sin A \cos A$

⇒2sin A cos A = 2 sin A

 $\Rightarrow 2\cos A = 2 \Rightarrow \cos A = 1$

Now, we have to check, to get the solution as 1, which degree value has to be applied.

When 0 degree is applied to cos value, i.e., cos 0 =1

Therefore, $\Rightarrow A = 0^{\circ}$

(iv) (C) is correct.

Substitute the of tan 30° in the given equation

tan 30° = 1/√3

 $2\tan 30^{\circ}/1 \tan^2 30^{\circ} = 2(1/\sqrt{3})/1 - (1/\sqrt{3})^2$

 $= (2/\sqrt{3})/(1-1/3) = (2/\sqrt{3})/(2/3) = \sqrt{3} = \tan 60^{\circ}$

The value of the given equation is equivalent to tan 60°.

https://byjus.com

3. If tan (A + B) = $\sqrt{3}$ and tan (A − B) = $1/\sqrt{3}$,0° < A + B ≤ 90°; A > B, find A and B.

Solution: tan (A + B) = $\sqrt{3}$ Since $\sqrt{3}$ = tan 60° Now substitute the degree value \Rightarrow tan (A + B) = tan 60° $(A + B) = 60^{\circ} \dots (i)$ The above equation is assumed as equation (i) $\tan (A - B) = 1/\sqrt{3}$ Since $1/\sqrt{3} = \tan 30^\circ$ Now substitute the degree value \Rightarrow tan (A – B) = tan 30° $(A - B) = 30^{\circ} \dots$ equation (ii) Now add the equation (i) and (ii), we get $A + B + A - B = 60^{\circ} + 30^{\circ}$ Cancel the terms B $2A = 90^{\circ}$ A= 45° Now, substitute the value of A in equation (i) to find the value of B $45^{\circ} + B = 60^{\circ}$ $B = 60^{\circ} - 45^{\circ}$ $B = 15^{\circ}$ Therefore $A = 45^{\circ}$ and $B = 15^{\circ}$ 4. State whether the following are true or false. Justify your answer. (i) $\sin(A + B) = \sin A + \sin B$. (ii) The value of sin θ increases as θ increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv) $\sin \theta = \cos \theta$ for all values of θ . (v) cot A is not defined for $A = 0^{\circ}$. Solution: (i) False.

Justification:

Let us take $A = 30^{\circ}$ and $B = 60^{\circ}$, then

https://byjus.com

Substitute the values in the sin (A + B) formula, we get

$$\sin (A + B) = \sin (30^{\circ} + 60^{\circ}) = \sin 90^{\circ} = 1 \text{ and},$$

 $\sin A + \sin B = \sin 30^\circ + \sin 60^\circ$

 $= 1/2 + \sqrt{3}/2 = 1 + \sqrt{3}/2$

Since the values obtained are not equal, the solution is false.

(ii) True.

Justification:

According to the values obtained as per the unit circle, the values of sin are:

 $\sin 0^\circ = 0$

 $\sin 30^{\circ} = 1/2$

 $\sin 45^{\circ} = 1/\sqrt{2}$

 $\sin 60^{\circ} = \sqrt{3/2}$

 $\sin 90^{\circ} = 1$

Thus the value of sin θ increases as θ increases. Hence, the statement is true

(iii) False.

According to the values obtained as per the unit circle, the values of cos are:

 $\cos 0^\circ = 1$

 $\cos 30^{\circ} = \sqrt{3/2}$

 $\cos 45^{\circ} = 1/\sqrt{2}$

 $\cos 60^{\circ} = 1/2$

 $\cos 90^\circ = 0$

Thus, the value of $\cos \theta$ decreases as θ increases. So, the statement given above is false.

(iv) False

 $\sin \theta = \cos \theta$, when a right triangle has 2 angles of ($\pi/4$). Therefore, the above statement is false.

(v) True.

Since cot function is the reciprocal of the tan function, it is also written as:

 $\cot A = \cos A / \sin A$

Now substitute $A = 0^{\circ}$

 $\cot 0^\circ = \cos 0^\circ / \sin 0^\circ = 1/0 = undefined.$

Hence, it is true

https://byjus.com