EXERCISE 8.4

1. Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of cot A.

Solution:

To convert the given trigonometric ratios in terms of cot functions, use trigonometric formulas
We know that,

```
\mp@subsup{\operatorname{cosec}}{}{2}}\textrm{A}-\mp@subsup{\operatorname{cot}}{}{2}\textrm{A}=
\mp@subsup{\operatorname{cosec}}{}{2}A=1+\mp@subsup{\operatorname{cot}}{}{2}A
```

Since cosec function is the inverse of sin function, it is written as
$1 / \sin ^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A}$
Now, rearrange the terms, it becomes
$\sin ^{2} A=1 /\left(1+\cot ^{2} A\right)$
Now, take square roots on both sides, we get
$\sin A= \pm 1 /\left(\sqrt{ }\left(1+\cot ^{2} A\right)\right.$
The above equation defines the sin function in terms of cot function
Now, to express sec function in terms of cot function, use this formula
$\sin ^{2} \mathrm{~A}=1 /\left(1+\cot ^{2} \mathrm{~A}\right)$
Now, represent the sin function as cos function
$1-\cos ^{2} A=1 /\left(1+\cot ^{2} A\right)$
Rearrange the terms,
$\cos ^{2} A=1-1 /\left(1+\cot ^{2} A\right)$
$\Rightarrow \cos ^{2} A=\left(1-1+\cot ^{2} A\right) /\left(1+\cot ^{2} A\right)$
Since sec function is the inverse of cos function,
$\Rightarrow 1 / \sec ^{2} A=\cot ^{2} A /\left(1+\cot ^{2} A\right)$
Take the reciprocal and square roots on both sides, we get
$\Rightarrow \sec A= \pm \sqrt{ }\left(1+\cot ^{2} A\right) / \cot A$
Now, to express tan function in terms of cot function
$\tan A=\sin A / \cos A$ and $\cot A=\cos A / \sin A$
Since cot function is the inverse of tan function, it is rewritten as
$\tan A=1 / \cot A$

2. Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Solution:
Cos A function in terms of $\sec A$:
$\sec A=1 / \cos A$
$\Rightarrow \cos A=1 / \sec A$
$\sec A$ function in terms of $\sec A$:
$\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}=1$
Rearrange the terms
$\sin ^{2} A=1-\cos ^{2} A$
$\sin ^{2} A=1-\left(1 / \sec ^{2} A\right)$
$\sin ^{2} A=\left(\sec ^{2} A-1\right) / \sec ^{2} A$
$\sin A= \pm \sqrt{ }\left(\sec ^{2} A-1\right) / \sec A$
$\operatorname{cosec} A$ function in terms of $\sec A$:
$\sin A=1 / \operatorname{cosec} A$
$\Rightarrow \operatorname{cosec} A=1 / \sin A$
$\operatorname{cosec} A= \pm \sec A / \sqrt{ }\left(\sec ^{2} A-1\right)$
Now, $\tan \mathrm{A}$ function in terms of $\sec \mathrm{A}$:
$\sec ^{2} A-\tan ^{2} A=1$
Rearrange the terms
$\Rightarrow \tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}-1$
$\tan A=\sqrt{ }\left(\sec ^{2} A-1\right)$
$\cot A$ function in terms of $\sec A$:
$\tan A=1 / \cot A$
$\Rightarrow \cot A=1 / \tan A$
$\cot A= \pm 1 / \sqrt{ }\left(\sec ^{2} A-1\right)$
3. Evaluate:
(i) $\left(\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Solution:
(i) $\left(\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)$

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,
$\left.=\left[\sin ^{2}\left(90^{\circ}-27^{\circ}\right)+\sin ^{2} 27^{\circ}\right] /\left[\cos ^{2}\left(90^{\circ}-73^{\circ}\right)+\cos ^{2} 73^{\circ}\right)\right]$
$=\left(\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\sin ^{2} 27^{\circ}+\cos ^{2} 73^{\circ}\right)$
$=1 / 1=1 \quad\left(\right.$ since $\left.\sin ^{2} A+\cos ^{2} A=1\right)$
Therefore, $\left(\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}\right) /\left(\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}\right)=1$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

To simplify this, convert some of the sin functions into cos functions and cos function into sin function and it becomes,
$=\sin \left(90^{\circ}-25^{\circ}\right) \cos 65^{\circ}+\cos \left(90^{\circ}-65^{\circ}\right) \sin 65^{\circ}$
$=\cos 65^{\circ} \cos 65^{\circ}+\sin 65^{\circ} \sin 65^{\circ}$
$=\cos ^{2} 65^{\circ}+\sin ^{2} 65^{\circ}=1\left(\right.$ since $\left.\sin ^{2} A+\cos ^{2} A=1\right)$
Therefore, $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}=1$
4. Choose the correct option. Justify your choice.
(i) $9 \sec ^{2} A-9 \tan ^{2} A=$
(A) 1
(B) 9
(C) 8
(D) 0
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$
(A) 0
(B) 1
(C) 2
(D) -1
(iii) $(\sec A+\tan A)(1-\sin A)=$
(A) $\sec A$
(B) $\sin A$
(C) $\operatorname{cosec} A$
(D) $\cos \mathrm{A}$
(iv) $1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}=$
(A) $\sec ^{2} A$
(B) -1
(C) $\cot ^{2} A$
(D) $\tan ^{2} \mathrm{~A}$

Solution:
(i) (B) is correct.

Justification:
Take 9 outside, and it becomes
$9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)$
$=9 \times 1=9 \quad(\because \sec 2 \mathrm{~A}-\tan 2 \mathrm{~A}=1)$
Therefore, $9 \sec ^{2} A-9 \tan ^{2} A=9$
(ii) (C) is correct

Justification:
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$
We know that, $\tan \theta=\sin \theta / \cos \theta$
$\sec \theta=1 / \cos \theta$
$\cot \theta=\cos \theta / \sin \theta$
$\operatorname{cosec} \theta=1 / \sin \theta$
Now, substitute the above values in the given problem, we get
$=(1+\sin \theta / \cos \theta+1 / \cos \theta)(1+\cos \theta / \sin \theta-1 / \sin \theta)$
Simplify the above equation,
$=(\cos \theta+\sin \theta+1) / \cos \theta \times(\sin \theta+\cos \theta-1) / \sin \theta$
$=(\cos \theta+\sin \theta)^{2}-1^{2} /(\cos \theta \sin \theta)$
$=\left(\cos ^{2} \theta+\sin ^{2} \theta+2 \cos \theta \sin \theta-1\right) /(\cos \theta \sin \theta)$
$=(1+2 \cos \theta \sin \theta-1) /(\cos \theta \sin \theta)\left(\right.$ Since $\left.\cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$=(2 \cos \theta \sin \theta) /(\cos \theta \sin \theta)=2$
Therefore, $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=2$
(iii) (D) is correct.

Justification:
We know that,
$\operatorname{Sec} A=1 / \cos A$
Tan A $=\sin \mathrm{A} / \cos \mathrm{A}$
Now, substitute the above values in the given problem, we get
$(\sec A+\tan A)(1-\sin A)$
$=(1 / \cos A+\sin A / \cos A)(1-\sin A)$
$=(1+\sin A / \cos A)(1-\sin A)$
$=\left(1-\sin ^{2} A\right) / \cos A$
$=\cos ^{2} A / \cos A=\cos A$
Therefore, $(\sec A+\tan A)(1-\sin A)=\cos A$
(iv) (D) is correct.

Justification:
We know that,
$\tan ^{2} \mathrm{~A}=1 / \cot ^{2} \mathrm{~A}$
Now, substitute this in the given problem, we get
$1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}$
$=\left(1+1 / \cot ^{2} \mathrm{~A}\right) / 1+\cot ^{2} \mathrm{~A}$
$=\left(\cot ^{2} A+1 / \cot ^{2} A\right) \times\left(1 / 1+\cot ^{2} A\right)$
$=1 / \cot ^{2} \mathrm{~A}=\tan ^{2} \mathrm{~A}$
So, $1+\tan ^{2} A / 1+\cot ^{2} A=\tan ^{2} A$
5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos \theta)$
(ii) $\cos A /(1+\sin A)+(1+\sin A) / \cos A=2 \sec A$
(iii) $\tan \theta /(1-\cot \theta)+\cot \theta /(1-\tan \theta)=1+\sec \theta \operatorname{cosec} \theta$
[Hint : Write the expression in terms of $\sin \theta$ and $\cos \theta$]
(iv) $(1+\sec A) / \sec A=\sin ^{2} A /(1-\cos A)$
[Hint : Simplify LHS and RHS separately]
(v) $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$, using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$.
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
(vii) $\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)=\tan \theta$
(viii) $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan A+\cot A)$
[Hint : Simplify LHS and RHS separately] (x) $\left(1+\tan ^{2} A / 1+\cot ^{2} A\right)=(1-\tan A / 1-\cot A)^{2}=\tan ^{2} A$
Solution:
(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos \theta)$

To prove this, first take the Left-Hand side (L.H.S) of the given equation, to prove the Right Hand Side (R.H.S)
L.H.S. $=(\operatorname{cosec} \theta-\cot \theta)^{2}$

The above equation is in the form of $(a-b)^{2}$, and expand it
Since $(a-b)^{2}=a^{2}+b^{2}-2 a b$
Here $\mathrm{a}=\operatorname{cosec} \theta$ and $\mathrm{b}=\cot \theta$
$=\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta-2 \operatorname{cosec} \theta \cot \theta\right)$
Now, apply the corresponding inverse functions and equivalent ratios to simplify
$=\left(1 / \sin ^{2} \theta+\cos ^{2} \theta / \sin ^{2} \theta-2 \cos \theta / \sin ^{2} \theta\right)$
$=\left(1+\cos ^{2} \theta-2 \cos \theta\right) /\left(1-\cos ^{2} \theta\right)$
$=(1-\cos \theta)^{2} /(1-\cos \theta)(1+\cos \theta)$
$=(1-\cos \theta) /(1+\cos \theta)=$ R.H.S.
Therefore, $(\operatorname{cosec} \theta-\cot \theta)^{2}=(1-\cos \theta) /(1+\cos \theta)$
Hence proved.
(ii) $(\cos A /(1+\sin A))+((1+\sin A) / \cos A)=2 \sec A$

Now, take the L.H.S of the given equation.
L.H.S. $=(\cos A /(1+\sin A))+((1+\sin A) / \cos A)$
$=\left[\cos ^{2} A+(1+\sin A)^{2}\right] /(1+\sin A) \cos A$
$=\left(\cos ^{2} A+\sin ^{2} A+1+2 \sin A\right) /(1+\sin A) \cos A$
Since $\cos ^{2} A+\sin ^{2} A=1$, we can write it as
$=(1+1+2 \sin A) /(1+\sin A) \cos A$
$=(2+2 \sin A) /(1+\sin A) \cos A$
$=2(1+\sin A) /(1+\sin A) \cos A$
$=2 / \cos A=2 \sec A=$ R.H.S.
L.H.S. $=$ R.H.S.
$(\cos A /(1+\sin A))+((1+\sin A) / \cos A)=2 \sec A$
Hence proved.
(iii) $\tan \theta /(1-\cot \theta)+\cot \theta /(1-\tan \theta)=1+\sec \theta \operatorname{cosec} \theta$
L.H.S. $=\tan \theta /(1-\cot \theta)+\cot \theta /(1-\tan \theta)$

We know that $\tan \theta=\sin \theta / \cos \theta$
$\cot \theta=\cos \theta / \sin \theta$
Now, substitute it in the given equation, to convert it in a simplified form
$=[(\sin \theta / \cos \theta) / 1-(\cos \theta / \sin \theta)]+[(\cos \theta / \sin \theta) / 1-(\sin \theta / \cos \theta)]$
$=[(\sin \theta / \cos \theta) /(\sin \theta-\cos \theta) / \sin \theta]+[(\cos \theta / \sin \theta) /(\cos \theta-\sin \theta) / \cos \theta]$
$=\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]+\cos ^{2} \theta /[\sin \theta(\cos \theta-\sin \theta)]$
$=\sin ^{2} \theta /[\cos \theta(\sin \theta-\cos \theta)]-\cos ^{2} \theta /[\sin \theta(\sin \theta-\cos \theta)]$
$=1 /(\sin \theta-\cos \theta)\left[\left(\sin ^{2} \theta / \cos \theta\right)-\left(\cos ^{2} \theta / \sin \theta\right)\right]$
$=1 /(\sin \theta-\cos \theta) \times\left[\left(\sin ^{3} \theta-\cos ^{3} \theta\right) / \sin \theta \cos \theta\right]$
$=\left[(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)\right] /[(\sin \theta-\cos \theta) \sin \theta \cos \theta]$
$=(1+\sin \theta \cos \theta) / \sin \theta \cos \theta$
$=1 / \sin \theta \cos \theta+1$
$=1+\sec \theta \operatorname{cosec} \theta=$ R.H.S.
Therefore, L.H.S. $=$ R.H.S.

Hence proved

(iv) $(1+\sec A) / \sec A=\sin ^{2} A /(1-\cos A)$

First find the simplified form of L.H.S
L.H.S. $=(1+\sec A) / \sec A$

Since secant function is the inverse function of cos function and it is written as
$=(1+1 / \cos A) / 1 / \cos A$
$=(\cos A+1) / \cos A / 1 / \cos A$
Therefore, $(1+\sec A) / \sec A=\cos A+1$
R.H.S. $=\sin ^{2} A /(1-\cos A)$

We know that $\sin ^{2} A=\left(1-\cos ^{2} A\right)$, we get
$=\left(1-\cos ^{2} \mathrm{~A}\right) /(1-\cos \mathrm{A})$
$=(1-\cos A)(1+\cos A) /(1-\cos A)$
Therefore, $\sin ^{2} A /(1-\cos A)=\cos A+1$
L.H.S. $=$ R.H.S.

Hence proved
(v) $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$, using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$.

With the help of identity function, $\operatorname{cosec}^{2} A=1+\cot ^{2} A$, let us prove the above equation.
L.H.S. $=(\cos A-\sin A+1) /(\cos A+\sin A-1)$

Divide the numerator and denominator by $\sin A$, we get
$=(\cos A-\sin A+1) / \sin A /(\cos A+\sin A-1) / \sin A$
We know that $\cos A / \sin A=\cot A$ and $1 / \sin A=\operatorname{cosec} A$
$=(\cot A-1+\operatorname{cosec} A) /(\cot A+1-\operatorname{cosec} A)$
$=\left(\cot A-\operatorname{cosec}^{2} A+\cot ^{2} A+\operatorname{cosec} A\right) /(\cot A+1-\operatorname{cosec} A)\left(u s i n g \operatorname{cosec}^{2} A-\cot ^{2} A=1\right.$
$=\left[(\cot A+\operatorname{cosec} A)-\left(\operatorname{cosec}^{2} A-\cot ^{2} A\right)\right] /(\cot A+1-\operatorname{cosec} A)$
$=[(\cot A+\operatorname{cosec} A)-(\operatorname{cosec} A+\cot A)(\operatorname{cosec} A-\cot A)] /(1-\operatorname{cosec} A+\cot A)$
$=(\cot A+\operatorname{cosec} A)(1-\operatorname{cosec} A+\cot A) /(1-\operatorname{cosec} A+\cot A)$
$=\cot A+\operatorname{cosec} A=$ R.H.S.
Therefore, $(\cos A-\sin A+1) /(\cos A+\sin A-1)=\operatorname{cosec} A+\cot A$
Hence Proved
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
L.H.S $=\sqrt{\frac{1+\sin A}{1-\sin A}}$

First divide the numerator and denominator of L.H.S. by $\cos \mathrm{A}$,

$$
=\sqrt{\frac{\frac{1}{\frac{\cos A}{\frac{1}{\cos A}-\frac{\sin A}{\cos A}}-\frac{\sin A}{\cos A}}}{}}
$$

We know that $1 / \cos A=\sec A$ and $\sin A / \cos A=\tan A$ and it becomes,
$=\sqrt{ }(\sec A+\tan A) /(\sec A-\tan A)$
Now using rationalization, we get

$$
\begin{aligned}
& =\sqrt{\frac{\sec A+\tan A}{\sec A-\tan A}} \times \sqrt{\frac{\sec A+\tan A}{\operatorname{Sec} A+\tan A}} \\
& =\sqrt{\frac{(\sec A+\tan A)^{2}}{\sec ^{2} A-\tan ^{2} A}}
\end{aligned}
$$

$=(\sec \mathrm{A}+\tan \mathrm{A}) / 1$
$=\sec \mathrm{A}+\tan \mathrm{A}=$ R.H.S
Hence proved
(vii) $\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)=\tan \theta$
L.H.S. $=\left(\sin \theta-2 \sin ^{3} \theta\right) /\left(2 \cos ^{3} \theta-\cos \theta\right)$

Take $\sin \theta$ as in numerator and $\cos \theta$ in denominator as outside, it becomes
$=\left[\sin \theta\left(1-2 \sin ^{2} \theta\right)\right] /\left[\cos \theta\left(2 \cos ^{2} \theta-1\right)\right]$
We know that $\sin ^{2} \theta=1-\cos ^{2} \theta$
$=\sin \theta\left[1-2\left(1-\cos ^{2} \theta\right)\right] /\left[\cos \theta\left(2 \cos ^{2} \theta-1\right)\right]$
$=\left[\sin \theta\left(2 \cos ^{2} \theta-1\right)\right] /\left[\cos \theta\left(2 \cos ^{2} \theta-1\right)\right]$
$=\tan \theta=$ R.H.S.
Hence proved
(viii) $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
L.H.S. $=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

It is of the form $(a+b)^{2}$, expand it
$(a+b)^{2}=a^{2}+b^{2}+2 a b$
$=\left(\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A\right)+\left(\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A\right)$
$=\left(\sin ^{2} A+\cos ^{2} A\right)+2 \sin A(1 / \sin A)+2 \cos A(1 / \cos A)+1+\tan ^{2} A+1+\cot ^{2} A$
$=1+2+2+2+\tan ^{2} A+\cot ^{2} A$
$=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}=$ R.H.S.
Therefore, $(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
Hence proved.
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan A+\cot A)$

First, find the simplified form of L.H.S
L.H.S. $=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$

Now, substitute the inverse and equivalent trigonometric ratio forms
$=(1 / \sin A-\sin A)(1 / \cos A-\cos A)$
$=\left[\left(1-\sin ^{2} A\right) / \sin A\right]\left[\left(1-\cos ^{2} A\right) / \cos A\right]$
$=\left(\cos ^{2} A / \sin A\right) \times\left(\sin ^{2} A / \cos A\right)$
$=\cos A \sin A$
Now, simplify the R.H.S
R.H.S. $=1 /(\tan A+\cot A)$
$=1 /(\sin A / \cos A+\cos A / \sin A)$
$=1 /\left[\left(\sin ^{2} A+\cos ^{2} A\right) / \sin A \cos A\right]$
$=\cos A \sin A$
L.H.S. $=$ R.H.S.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=1 /(\tan A+\cot A)$
Hence proved
(x) $\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\tan ^{2} \mathrm{~A}$
L.H.S. $=\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)$

Since cot function is the inverse of tan function,
$=\left(1+\tan ^{2} \mathrm{~A} / 1+1 / \tan ^{2} \mathrm{~A}\right)$
$=1+\tan ^{2} \mathrm{~A} /\left[\left(1+\tan ^{2} \mathrm{~A}\right) / \tan ^{2} \mathrm{~A}\right]$
Now cancel the $1+\tan ^{2} \mathrm{~A}$ terms, we get
$=\tan ^{2} \mathrm{~A}$
$\left(1+\tan ^{2} \mathrm{~A} / 1+\cot ^{2} \mathrm{~A}\right)=\tan ^{2} \mathrm{~A}$
Similarly,
$(1-\tan \mathrm{A} / 1-\cot \mathrm{A})^{2}=\tan ^{2} \mathrm{~A}$
Hence proved

