EXERCISE 13.1

1. Evaluate the given limit: $\lim _{x \rightarrow 3} x+3$

Solution:

Given,
$\lim _{x \rightarrow 3} x+3$
Substituting $x=3$, we get
$=3+3$
$=6$
2. Evaluate the given limit: $\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)$

Solution:

Given limit,
$\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)$
Substituting $x=\pi$, we get

$$
\lim _{x \rightarrow \pi}\left(x-\frac{22}{7}\right)=(\pi-22 / 7)
$$

3. Evaluate the given limit: $\lim _{r \rightarrow 1} \pi r^{2}$

Solution:

Given limit, $\lim _{r \rightarrow 1} \pi r^{2}$
Substituting $r=1$, we get

$$
\begin{aligned}
& \lim _{r \rightarrow 1} \pi r^{2}=\pi(1)^{2} \\
& =\pi
\end{aligned}
$$

4. Evaluate the given limit: $\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}$

Solution:

Given limit,
$\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}$

Substituting $x=4$, we get
$\lim _{x \rightarrow 4} \frac{4 x+3}{x-2}=[4(4)+3] /(4-2)$
$=(16+3) / 2$
$=19 / 2$
5. Evaluate the given limit: $\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}$

Solution:

Given limit,
$\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}$
Substituting $x=-1$, we get
$\lim _{x \rightarrow-1} \frac{x^{10}+x^{5}+1}{x-1}$
$=\left[(-1)^{10}+(-1)^{5}+1\right] /(-1-1)$
$=(1-1+1) /-2$
$=-1 / 2$
6. Evaluate the given limit:

$$
\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}
$$

Solution:

Given limit,
$\lim _{x \rightarrow 0} \frac{(x+1)^{5}-1}{x}$
$=\left[(0+1)^{5}-1\right] / 0$
$=0$
Since this limit is undefined,
Substitute $x+1=y$, then $x=y-1$

$$
\lim _{y \rightarrow 1} \frac{(y)^{5}-1}{y-1}
$$

$$
=\lim _{y \rightarrow 1} \frac{(y)^{5}-1^{5}}{y-1}
$$

We know that,

$$
\lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1}
$$

Hence,

$$
\begin{aligned}
& \lim _{y \rightarrow 1} \frac{(y)^{5}-1^{5}}{y-1} \\
= & 5(1)^{5-1} \\
= & 5(1)^{4} \\
= & 5
\end{aligned}
$$

7. Evaluate the given limit: $\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}$

Solution:

By evaluating the limit at $x=2$, we get

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}=\left[3(2)^{2}-x-10\right] / 4-4 \\
& =0
\end{aligned}
$$

Now, by factorising numerator, we get

$$
\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{3 x^{2}-6 x+5 x-10}{x^{2}-2^{2}}
$$

We know that,
$a^{2}-b^{2}=(a-b)(a+b)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x-2)(3 x+5)}{(x-2)(x+2)} \\
& =\lim _{x \rightarrow 2} \frac{(3 x+5)}{(x+2)}
\end{aligned}
$$

By substituting $x=2$, we get,
$=[3(2)+5] /(2+2)$
$=11 / 4$
8. Evaluate the given limit: $\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}$

The Learning App

Solution:

First substitute $\mathrm{x}=3$ in the given limit, we get

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{(3)^{4}-81}{2(3)^{2}-5 \times 3-3} \\
= & (81-81) /(18-18) \\
= & 0 / 0
\end{aligned}
$$

Since the limit is of the form $0 / 0$, we need to factorise the numerator and denominator

$$
\lim _{x \rightarrow 3} \frac{\left(x^{2}-9\right)\left(x^{2}+9\right)}{2 x^{2}-6 x+x-3} \lim _{x \rightarrow 3} \frac{(x-3)(x+3)\left(x^{2}+9\right)}{(2 x+1)(x-3)}
$$

$$
\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}=\lim _{x \rightarrow 3} \frac{(x+3)\left(x^{2}+9\right)}{(2 x+1)}
$$

Now substituting $x=3$, we get

$$
=\frac{(3+3)\left(3^{2}+9\right)}{(2 \times 3+1)}
$$

$$
=108 / 7
$$

Hence,

$$
\lim _{x \rightarrow 3} \frac{x^{4}-81}{2 x^{2}-5 x-3}=108 / 7
$$

9. Evaluate the given limit: $\lim _{x \rightarrow 0} \frac{a x+b}{c x+1}$

Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{a x+b}{c x+1} \\
= & {[a(0)+b] / c(0)+1 } \\
= & b / 1 \\
= & b
\end{aligned}
$$

10. Evaluate the given limit: $\lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}}-1}$

Solution:

$$
\begin{aligned}
& \lim _{z \rightarrow 1} \frac{z^{\frac{1}{3}}-1}{z^{\frac{1}{6}-1}}=(1-1) /(1-1) \\
& =0
\end{aligned}
$$

Let the value of $z^{1 / 6}$ be x
$\left(z^{1 / 6}\right)^{2}=x^{2}$
$z^{1 / 3}=x^{2}$
Now, substituting $z^{1 / 3}=x^{2}$ we get
$\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{x^{2}-1^{2}}{x-1}$
We know that,

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n a^{n-1} \\
& \lim _{x \rightarrow 1} \frac{x^{2}-1^{2}}{x-1}=2(1)^{2-1} \\
& =2
\end{aligned}
$$

11. Evaluate the given limit: $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}, a+b+c \neq 0$

Solution:

Given limit,
$\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}, a+b+c \neq 0$
Substituting $x=1$,
$\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}$
$=\left[a(1)^{2}+b(1)+c\right] /\left[c(1)^{2}+b(1)+a\right]$
$=(a+b+c) /(a+b+c)$
Given,
$[a+b+c \neq 0]$
$=1$

$$
\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}
$$

Solution:

By substituting $x=-2$, we get

$$
\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}=0 / 0
$$

Now,

$$
\lim _{x \rightarrow-2} \frac{\frac{1}{x}+\frac{1}{2}}{x+2}=\frac{\frac{2+x}{2 x}}{x+2}
$$

$=1 / 2 \mathrm{x}$
$=1 / 2(-2)$
$=-1 / 4$
13. Evaluate the given limit: $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$

Solution:
Given ${ }^{\lim _{x \rightarrow 0} \frac{\sin a x}{b x}}$

Formula used here
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
By applying the limits in the given expression
$\lim _{x \rightarrow 0} \frac{\sin \mathrm{ax}}{\mathrm{bx}}=\frac{0}{0}$
By multiplying and dividing by ' a ' in the given expression, we get
$\lim _{x \rightarrow 0} \frac{\sin a x}{b x} \times \frac{a}{a}$
We get,
$\lim _{x \rightarrow 0} \frac{\sin a x}{a x} \times \frac{a}{b}$
We know that,

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$$
=\frac{\mathrm{a}}{\mathrm{~b}} \lim _{\mathrm{ax} \rightarrow 0} \frac{\sin \mathrm{ax}}{\mathrm{ax}}=\frac{\mathrm{a}}{\mathrm{~b}} \times 1
$$

$$
=a / b
$$

14. Evaluate the given limit: $\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}, a, b \neq 0$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}=0 / 0
$$

By multiplying ax and bx in numerator and denominator, we get

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{\sin b x}=\lim _{x \rightarrow 0} \frac{\frac{\sin a x}{\sin b x} \times a x}{b x} \times b x
$$

Now, we get

- $\frac{\lim _{\mathrm{ax} \rightarrow 0} \frac{\sin \mathrm{ax}}{\mathrm{ax}}}{\lim _{\mathrm{bx} \rightarrow 0} \frac{\sin b \mathrm{x}}{\mathrm{bx}}}$

We know that,
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Hence, $\mathrm{a} / \mathrm{b} \times 1$
$=a / b$
15. Evaluate the given limit:
$\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$

Solution:

$$
\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}
$$

$$
\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}=\lim _{\pi-x \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)} \times \frac{1}{\pi}
$$

$$
=\frac{1}{\pi} \lim _{\pi-x \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)}
$$

We know that

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& \frac{1}{\pi} \lim _{\pi-x \rightarrow 0} \frac{\sin (\pi-x)}{(\pi-x)}=\frac{1}{\pi} \times 1 \\
& =1 / \pi
\end{aligned}
$$

16. Evaluate the given limit:
$\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$
Solution:

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}=\frac{\cos 0}{\pi-0} \\
& =1 / \pi
\end{aligned}
$$

17. Evaluate the given limit:

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}=\frac{0}{0}
$$

Hence,

$$
\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}=\lim _{x \rightarrow 0} \frac{1-2 \sin ^{2} x-1}{1-2 \sin ^{2} \frac{x}{2}-1}
$$

$$
\left(\cos 2 x=1-2 \sin ^{2} x\right)
$$

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sin ^{2} \frac{x}{2}}=\lim _{x \rightarrow 0} \frac{\frac{\sin ^{2} x \times x^{2}}{x^{2}}}{\frac{\sin 2 \frac{x}{2} \times \frac{x^{2}}{4}}{\left(\frac{x}{2}\right)^{2}}}
$$

$$
=4^{\frac{\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}}{\left.\lim _{x \rightarrow 0} \frac{\left(i^{2 x} \frac{x}{2}\right.}{2}\right)^{2}}}
$$

$$
=4^{\frac{\lim _{x \rightarrow 0}\left(\frac{\sin ^{2} x}{x^{2}}\right)^{2}}{\lim _{x \rightarrow 0}\left(\frac{\sin 2 \frac{x}{2}}{\left(\frac{x}{2}\right)^{2}}\right)^{2}}}
$$

We know that,

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$=4 \times 1^{2} / 1^{2}$
$=4$
18. Evaluate the given limit:

$$
\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}
$$

Solution:

$$
\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}=\frac{0}{0}
$$

Hence,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}=\frac{1}{b} \lim _{x \rightarrow 0} \frac{x(a+\cos x)}{\sin x} \\
& =\frac{1}{b} \lim _{x \rightarrow 0} \times \lim _{x \rightarrow 0}(a+\cos x) \\
& =\frac{1}{b} \times \frac{1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}} \times \lim _{x \rightarrow 0}(a+\cos x)
\end{aligned}
$$

We know that,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \\
& =\frac{1}{b} \times(a+\cos 0) \\
& =(a+1) / b
\end{aligned}
$$

19. Evaluate the given limit:
$\lim _{x \rightarrow 0} x \sec x$

Solution:

$$
\lim _{x \rightarrow 0} x \sec x=\lim _{x \rightarrow 0} \frac{x}{\cos x}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{0}{\cos 0}=\frac{0}{1} \\
& =0
\end{aligned}
$$

20. Evaluate the given limit:

$$
\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} a, b, a+b \neq 0
$$

Solution:

BYJU'S
The Learning App

$$
\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x}=\frac{0}{0}
$$

Hence,
$\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x}=\lim _{x \rightarrow 0} \frac{\left(\sin \frac{a x}{a x}\right) a x+b x}{a x+\left(\sin \frac{b x}{b x}\right)}$
$=\frac{\left(\lim _{a x \rightarrow 0} \sin \frac{a x}{a x}\right) \times \lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x \times\left(\lim _{b x \rightarrow 0} \sin \frac{b x}{b x}\right)}$
We know that,
$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$=\frac{\lim _{X \rightarrow 0} a x+\lim _{X \rightarrow 0} b x}{\lim _{x \rightarrow 0} a x+\lim _{x \rightarrow 0} b x}$
We get,
$\lim _{x \rightarrow 0}(a x+b x)$
$\lim _{x \rightarrow 0}(a x+b x)$
$=1$
21. Evaluate the given limit:
$\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$
Solution:

The Learning App

$$
\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)
$$

Applying the formulas for $\operatorname{cosec} x$ and $\cot x$, we get

$$
\begin{aligned}
& \operatorname{cosec} x=\frac{1}{\sin x} \text { and } \cot x=\frac{\cos x}{\sin x} \\
& \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)=\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{\cos x}{\sin x}\right) \\
& \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}
\end{aligned}
$$

Now, by applying the formula we get,

$$
\begin{aligned}
& 1-\cos x=2 \sin ^{2} \frac{x}{2} \text { and } \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2} \\
& \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} \\
& \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)=\lim _{x \rightarrow 0} \tan \frac{x}{2} \\
& =0
\end{aligned}
$$

22. Evaluate the given limit:

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}
$$

[^0]The Learning App
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}=\frac{0}{0}$
Let $\mathrm{x}-(\pi / 2)=\mathrm{y}$
Then, $x \rightarrow(\pi / 2)=y \rightarrow 0$
Now, we get
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan 2 x}{x-\frac{\pi}{2}}=\lim _{y \rightarrow 0} \frac{\tan 2\left(y+\frac{\pi}{2}\right)}{y}$
$=\lim _{\mathrm{y} \rightarrow 0} \frac{\tan (2 \mathrm{y}+\pi)}{\mathrm{y}}$
$=\lim _{\mathrm{y} \rightarrow 0} \frac{\tan (2 \mathrm{y})}{\mathrm{y}}$
We know that,
$\tan x=\sin x / \cos x$
$=\lim _{\mathrm{y} \rightarrow 0 \mathrm{y} \cos 2 \mathrm{y}} \frac{\sin 2 \mathrm{y}}{}$
By multiplying and dividing by 2 , we get

$$
\begin{aligned}
& =\lim _{y \rightarrow 0} \frac{\sin 2 y}{2 y} \times \frac{2}{\cos 2 y} \\
& =\lim _{2 y \rightarrow 0} \frac{\sin 2 y}{2 y} \times \lim _{y \rightarrow 0} \frac{2}{\cos 2 y} \\
& =1 \times 2 / \cos 0 \\
& =1 \times 2 / 1 \\
& =2
\end{aligned}
$$

23.

Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, where $f(x)=\left\{\begin{array}{r}2 x+3 x \leq 0 \\ 3(x+1) x>0\end{array}\right.$

Solution:

Given function is $f(x)=\left\{\begin{array}{r}2 x+3 x \leq 0 \\ 3(x+1) x>0\end{array}\right.$
$\lim _{x \rightarrow 0} f(x):$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(2 x+3) \\
&= 2(0)+3 \\
&= 0+3 \\
&= 3 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} 3(x+1): \\
&=3(0+1) \\
&=3(1) \\
&=3
\end{aligned}
$$

Hence, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0} f(x)=3$

Now, for $\lim _{x \rightarrow 1} f(x)$:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} 3(x+1) \\
& =3(1+1) \\
& =3(2) \\
& =6
\end{aligned}
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} 3(x+1)$
$=3(1+1)$
$=3(2)$
$=6$
Hence, $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=6$
$\lim _{x \rightarrow 0} f(x)=3 \underset{\text { and }}{ } \lim _{x \rightarrow 1} f(x)=6$
24. Find
$\lim _{x \rightarrow 1} f(x)$, where
$f(x)=\left\{\begin{array}{c}x^{2}-1 x \leq 1 \\ -x^{2}-1 x>1\end{array}\right.$
Solution:

Given function is:
$f(x)=\left\{\begin{array}{c}x^{2}-1 x \leq 1 \\ -x^{2}-1 x>1\end{array}\right.$
$\lim _{x \rightarrow 1} f(x):$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} x^{2}-1$
$=1^{2}-1$
$=1-1$
$=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(-x^{2}-1\right)$
$=\left(-1^{2}-1\right)$
$=-1-1$
$=-2$
We find,
$\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$

Hence, $\lim _{x \rightarrow 1} f(x)$ does not exist
25. Evaluate
$\lim _{x \rightarrow 0} f(x)$, where $f(x)=$
$\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ x \\ 0, x=0\end{array}\right.$

Solution:

Given function is $f(x)=\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ x \\ 0, x=0\end{array}\right.$
We know that,
$\lim _{x \rightarrow a} f(x)$
exists only when $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
Now, we need to prove that: $x \rightarrow 0 \quad x \rightarrow 0^{+}$

We know,
$|x|=x$, if $x>=-x$, if $x<0$
Hence,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \\
& =\lim _{x \rightarrow 0} \frac{-x}{x}=\lim _{x \rightarrow 0}(-1) \\
& =-1
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}
$$

$$
=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0}(1)
$$

$$
=1
$$

We find here,

$$
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
$$

Hence, ${ }^{\lim _{x \rightarrow 0} f(x)}$ does not exist.
26. Find
$\lim _{x \rightarrow 0} f(x)$
$x \rightarrow 0$, where $f(x)=$
$\left\{\begin{array}{c}\frac{x}{|x|}, \\ x \neq 0 \\ 0,\end{array}\right.$
Solution:
Given function is:
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\frac{\mathrm{x}}{|\mathrm{x}|}, \\ \mathrm{x}=0 \\ 0,\end{array}\right.$
$\lim _{x \rightarrow 0} f(x):$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}$
$=\lim _{x \rightarrow 0} \frac{x}{-x}=\lim _{x \rightarrow 0} \frac{1}{-1}$
$=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}$
$=\lim _{x \rightarrow 0} \frac{x}{x}=\lim _{x \rightarrow 0}(1)$
$=1$
We find here,

$$
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
$$

Hence, ${ }^{\lim _{\mathrm{x} \rightarrow 0} \mathrm{f}(\mathrm{x})}$ does not exist.

27. Find

$\lim _{x \rightarrow 5} f(x)$
$f(x)=|x|-5$

Solution:

Given function is:

$$
\begin{aligned}
& f(x)=|x|-5 \\
& \lim _{x \rightarrow 5} f(x): \\
& \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}|x|-5 \\
& =\lim _{x \rightarrow 5}(x-5)=5-5 \\
& =0
\end{aligned}
$$

$$
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}|x|-5
$$

$$
=\lim _{x \rightarrow 5}(x-5)
$$

$=5-5$
$=0$

Hence, $\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5} f(x)=0$
28. Suppose
$f(x)=\left\{\begin{array}{c}a+b x, x<1 \\ 4, \quad x=1 \\ b-a x x>1\end{array}\right.$ and if
$\lim _{x \rightarrow 1} f(x)=f(1)$ what are the possible values of a and $b ?$
Solution:
Given function is:

$$
f(x)=\left\{\begin{array}{l}
a+b x, x<1 \\
4, x=1 \\
b-a x, x>1
\end{array}\right. \text { and }
$$

$\lim _{x \rightarrow 1} f(x)=f(1)$
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1} a+b x$
$=\mathrm{a}+\mathrm{b}(1)$
$=\mathrm{a}+\mathrm{b}$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} b-a x$
$=\mathrm{b}-\mathrm{a}(1)$
$=\mathrm{b}-\mathrm{a}$

The Learning App

Here,
$\mathrm{f}(1)=4$

Hence, $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)=f(1)$
Then, $\mathrm{a}+\mathrm{b}=4$ and $\mathrm{b}-\mathrm{a}=4$
By solving the above two equations, we get,
$\mathrm{a}=0$ and $\mathrm{b}=4$
Therefore, the possible values of a and b is 0 and 4 respectively
29. Let $a_{1}, a_{2}, \ldots \ldots . . a_{n}$ be fixed real numbers and define a function
$f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots \ldots\left(x-a_{n}\right)$.
What is
$\lim _{x \rightarrow a_{1}} f(x)$?
For some $\mathbf{a} \neq \mathbf{a}_{1}, a_{2}, \ldots \ldots . a_{n}$, compute
$\lim _{x \rightarrow \mathrm{a}} f(x)$
Solution:

Given function is:
$f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)$
$\lim _{x \rightarrow a_{1}} f(x):$

$$
\begin{aligned}
& \lim _{x \rightarrow a_{1}} f(x)=\lim _{x \rightarrow a_{1}}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right] \\
& =\left[\lim _{x \rightarrow a_{1}}\left(x-a_{1}\right)\right]\left[[\operatorname { l i m } _ { x \rightarrow a _ { 1 } } (x - a _ { 2 })] \ldots \left[\left[\lim _{x \rightarrow a_{1}}\left(x-a_{n}\right)\right]\right.\right.
\end{aligned}
$$

We get,

$$
=\left(a_{1}-a_{1}\right)\left(a_{1}-a_{2}\right) \ldots\left(a_{1}-a_{n}\right)=0
$$

$$
\text { Hence, }{ }^{\lim _{x \rightarrow a_{1}} f(x)}=0
$$

$\lim _{x \rightarrow a} f(x):$
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left[\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right)\right]$
$=\left[\lim _{x \rightarrow a}\left(x-a_{1}\right)\right]\left[\lim _{x \rightarrow a}\left(x-a_{2}\right)\right] \ldots\left[\lim _{x \rightarrow a}\left(x-a_{n}\right)\right]$
We get,
$=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots . .\left(a-a_{n}\right)$
Hence, $\lim _{x \rightarrow a} f(x)=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots\left(a-a_{n}\right)$
Therefore, $\lim _{x \rightarrow a_{1}} f(x)=0$ and $\lim _{x \rightarrow a} f(x)=\left(a-a_{1}\right)\left(a-a_{2}\right) \ldots\left(a-a_{n}\right)$

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{rl}
|\mathrm{x}|+1, & \mathrm{x}
\end{array}<000 \mathrm{x}=0\right.
$$

30. If

$$
\text { For what value (s) of a does } \lim _{x \rightarrow a} f(x) \text { exist? }
$$

Solution:

Given function is:

There are three cases.
Case 1:
When $\mathrm{a}=0$
$\lim _{x \rightarrow 0} f(x):$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(|x|+1)$
$=\lim _{x \rightarrow 0}(-x+1)=-0+1$
$=1$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(|x|-1)
$$

$=\lim _{x \rightarrow 0}(x-1)=0-1$
$=-1$
Here, we find

$$
\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)
$$

Hence, $\lim _{x \rightarrow 0} f(x)$ does not exit.
Case 2:
When a <0

$$
\lim _{x \rightarrow a} f(x):
$$

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}}(|x|+1)
$$

$$
\lim _{x \rightarrow a}(-x+1)=-a+1
$$

$$
\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}}(|\mathrm{x}|+1)
$$

$$
=\lim _{x \rightarrow a}(-x+1)=-a+1
$$

Hence, $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a} f(x)=-a+1$
Therefore, $\varliminf_{\lim }(\mathrm{f}(\mathrm{x}))$ exists at $\mathrm{x}=\mathrm{a}$ and $\mathrm{a}<0$

Case 3:
When $\mathrm{a}>0$
$\lim _{x \rightarrow a} f(x):$
$\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}}(|x|-1)$
$=\lim _{x \rightarrow a}(x-1)=a-1$
$\lim _{x \rightarrow \mathrm{a}^{+}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{a}^{+}}(|\mathrm{x}|-1)$
$=\lim _{x \rightarrow a}(x-1)=a-1$
Hence, $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a} f(x)=a-1$
Therefore, $\left.\left.\lim _{(\mathrm{f}}^{\mathrm{f}} \mathrm{x}\right)\right)$ exists at $\mathrm{x}=\mathrm{a}$ when $\mathrm{a}>0$
31. If the function $f(x)$ satisfies $\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$, evaluate $\lim _{x \rightarrow 1} f(x)$

Solution:

Given function that $\mathrm{f}(\mathrm{x})$ satisfies

$$
\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi
$$

$$
\begin{aligned}
& \frac{\lim _{x \rightarrow 1} f(x)-2}{\lim _{x \rightarrow 1} x^{2}-1}=\pi \\
& \lim _{x \rightarrow 1}(f(x)-2)=\pi\left(\lim _{x \rightarrow 1}\left(x^{2}-1\right)\right)
\end{aligned}
$$

Substituting $\mathrm{x}=1$, we get,

$$
\begin{aligned}
& \lim _{x \rightarrow 1}(f(x)-2)=\pi\left(1^{2}-1\right) \\
& \lim _{x \rightarrow 1}(f(x)-2)=\pi(1-1) \\
& \lim _{x \rightarrow 1}(f(x)-2)=0 \\
& \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} 2=0 \\
& \lim _{x \rightarrow 1} f(x)-2=0 \\
& =2
\end{aligned}
$$

32. If

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\mathrm{mx} \mathrm{x}^{2}+\mathrm{n}, \quad \mathrm{x}<0 \\
\mathrm{nx}+\mathrm{m}, \quad 0 \leq \mathrm{x} \leq 1 \\
\mathrm{nx}+\mathrm{m}, \quad \mathrm{x}>1
\end{array}\right.
$$ For what integers m and n does both $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ exist?

Solution:

Given function is

$$
f(x)=\left\{\begin{array}{l}
\mathrm{mx}^{2}+\mathrm{n}, \quad \mathrm{x}<0 \\
\mathrm{nx}+\mathrm{m}, \quad 0 \leq \mathrm{x} \leq 1 \\
\mathrm{nx}+\mathrm{m} . \\
\mathrm{n}
\end{array} \mathrm{x}>1\right.
$$

$\lim _{x \rightarrow 0} f(x):$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}\left(m x^{2}+n\right)$
$=m(0)+n$
$=0+\mathrm{n}$
$=n$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(n x+m)$
$=n(0)+\mathrm{m}$
$=0+\mathrm{m}$
$=\mathrm{m}$

Hence,
$\lim _{x \rightarrow 0} f(x)$ exists if $n=m$.
Now,

$$
\lim _{x \rightarrow 1} f(x):
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1}(n x+m) \\
& =n(1)+m \\
& =n+m \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1}\left(n x^{3}+m\right) \\
& =n(1)^{3}+m \\
& =n(1)+m \\
& =n+m
\end{aligned}
$$

Therefore $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1} f(x)$
Hence, for any integral value of m and $n^{\lim _{x \rightarrow 1} f(x)}$ exists.

[^0]: Solution:

