EXERCISE 13.2

1. Find the derivative of $x^{2}-2$ at $x=10$.

Solution:

Let $f(x)=x^{2}-2$

From first principle

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Put $x=10$, we get

$$
\begin{aligned}
& f^{\prime}(10)=\lim _{h \rightarrow 0} \frac{f(10+h)-f(10)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(10+h)^{2}-2\right]-\left(10^{2}-2\right)}{h}
\end{aligned}
$$

$$
=\lim _{\mathrm{h} \rightarrow 0} \frac{10^{2}+2 \times 10 \times \mathrm{h}+\mathrm{h}^{2}-2-10^{2}+2}{\mathrm{~h}}
$$

$$
=\lim _{h \rightarrow 0} \frac{20 h+h^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0}(20+h)
$$

$$
=20+0
$$

$$
=20
$$

2. Find the derivative of x at $x=1$.

Solution:
Let $\mathrm{f}(\mathrm{x})=\mathrm{x}$
Then,

From first principle

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Let $f(x)=x$
From first principle

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(10)}{h}
$$

Put $\mathrm{x}=1$, we get
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{(1+h)-1}{h}$
$=\lim _{h \rightarrow 0} \frac{1+h-1}{h}$
$=\lim _{h \rightarrow 0} \frac{h}{h}$
$=\lim _{h \rightarrow 0} 1$
$=1$
3. Find the derivative of 99 x at $\mathrm{x}=100$.

Solution:

Let $\mathrm{f}(\mathrm{x})=99 \mathrm{x}$,
From the first principle,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Put $\mathrm{x}=100$, we get

$$
\begin{aligned}
& f^{\prime}(100)=\lim _{h \rightarrow 0} \frac{f(100+h)-f(100)}{h} \\
& =\lim _{h \rightarrow 0} \frac{99(100+h)-99 \times 100}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{99 \times 100+99 h-99 \times 100}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{99 \times h}{h}
$$

$$
=\lim _{h \rightarrow 0} 99
$$

$$
=99
$$

4. Find the derivative of the following functions from the first principle.
(i) $x^{3}-27$
(ii) $(x-1)(x-2)$
(iii) $1 / x^{2}$
(iv) $x+1 / x-1$

Solution:
(i) Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-27$

From the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{3}-27\right]-\left(x^{3}-27\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+h^{3}+3 x^{2} h+3 x^{2}-x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}+3 x^{2} h+3 x^{2}}{h} \\
& =\lim _{h \rightarrow 0}\left(h^{2}+3 x^{2}+3 x h\right) \\
& =0+3 x^{2} \\
& =3 x^{2} \\
& \text { (ii) Let } f(x)=(x-1)(x-2)
\end{aligned}
$$

From the first principle,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{(x+h-1)(x+h-2)-(x-1)(x-2)}{h}
$$

$$
\lim _{h \rightarrow 0} \frac{\left(x^{2}+h x-2 x+h x+h^{2}-2 h-x-h+2\right)-\left(x^{2}-2 x-x+2\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{h x+h x+h^{2}-2 h-h}{h}
$$

$$
=\lim _{\mathrm{h} \rightarrow 0}(\mathrm{~h}+2 \mathrm{x}-3)
$$

$$
\begin{aligned}
& =0+2 x-3 \\
& =2 x-3
\end{aligned}
$$

(iii) Let $f(x)=1 / x^{2}$

From the first principle, we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{x^{2}-(x+h)^{2}}{h x^{2}(x+h)^{2}}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{x^{2}-x^{2}-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right]
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-h^{2}-2 h x}{x^{2}(x+h)^{2}}\right]
$$

$$
=\lim _{h \rightarrow 0}\left[\frac{-h-2 x}{x^{2}(x+h)^{2}}\right]
$$

$$
=(0-2 x) /\left[x^{2}(x+0)^{2}\right]
$$

$$
=\left(-2 / x^{3}\right)
$$

(iv) Let $\mathrm{f}(\mathrm{x})=\mathrm{x}+1 / \mathrm{x}-1$

From the first principle, we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h+1}{x+h-1}-\frac{x+1}{x-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x-1)(x+h+1)-(x+1)(x+h-1)}{h(x-1)(x+h-1)} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\left(x^{2}+h x+x-x-h-1\right)-\left(x^{2}+h x+x-x+h-1\right)}{(x-1)(x+h-1)}\right] \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{h(x-1)(x+h-1)} \quad \text { Activate Windo } \\
& =\lim _{h \rightarrow 0} \frac{-2}{(x-1)(x+h-1)} \\
& =-\frac{2}{(x-1)(x-1)} \\
& =-\frac{2}{(x-1)^{2}}
\end{aligned}
$$

5. For the function $f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots \frac{x^{2}}{2}+x+1$, prove that $f^{\prime}(1)=100 f^{\prime}(0)$.

Solution:

Given function is:
$f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots \frac{x^{2}}{2}+x+1$
By differentiating both sides, we get
$\frac{d}{d x} f(x)=\frac{d}{d x}\left[\frac{x^{100}}{100}+\frac{x^{99}}{99}+\cdots+\frac{x^{2}}{2}+x+1\right]$
$=\frac{d}{d x}\left(\frac{x^{100}}{100}\right)+\frac{d}{d x}\left(\frac{x^{99}}{99}\right)+\cdots+\frac{d}{d x}\left(\frac{x^{2}}{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1)$
We know that,
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{x}^{\mathrm{n}-1}$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{f}(\mathrm{x})=\frac{100 \mathrm{x}^{99}}{100}+\frac{99 \mathrm{x}^{98}}{99}+\cdots+\frac{2 \mathrm{x}}{2}+1+0$

$$
f^{\prime}(x)=x^{99}+x^{98}+\cdots+x+1
$$

At $x=0$, we get

$$
f^{\prime}(0)=0+0+\ldots+0+1
$$

$f^{\prime}(0)=1$
At $x=1$, we get

$$
f^{\prime}(1)=1^{99}+1^{98}+\ldots+1+1=[1+1 \ldots .+1] 100 \text { times }=1 \times 100=100
$$

Hence, $f^{\prime}(1)=100 f^{\prime}(0)$
6. Find the derivative of $x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}$ for some fixed real number a. Solution:

The Learning App
Given function is:

$$
f(x)=x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}
$$

By differentiating both sides, we get

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(x^{n}+a x^{n-1}+a^{2} x^{n-2}+\ldots+a^{n-1} x+a^{n}\right) \\
& =\frac{d}{d x}\left(x^{n}\right)+a \frac{d}{d x}\left(x^{n-1}\right)+a^{2} \frac{d}{d x}\left(x^{n-2}\right)+\cdots+a^{n-1} \frac{d}{d x}(x)+a^{n} \frac{d}{d x}(1)
\end{aligned}
$$

We know that,

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}
$$

$$
f^{\prime}(x)=n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}+a^{n}(0)
$$

$$
f^{\prime}(x)=n x^{n-1}+a(n-1) x^{n-2}+a^{2}(n-2) x^{n-3}+\ldots+a^{n-1}
$$

7. For some constants $a \operatorname{and} b$, find the derivative of
(i) $(x-a)(x-b)$
(ii) $\left(a x^{2}+b\right)^{2}$
(iii) $\mathrm{x}-\mathrm{a} / \mathrm{x}-\mathrm{b}$

Solution:

(i) $(x-a)(x-b)$

Let $\mathrm{f}(\mathrm{x})=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$
$f(x)=x^{2}-(a+b) x+a b$
Now, by differentiating both sides, we get

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(x^{2}-(a+b) x+a b\right) \\
& =\frac{d}{d x}\left(x^{2}\right)-(a+b) \frac{d}{d x}(x)+\frac{d}{d x}(a b)
\end{aligned}
$$

We know that,
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{nx} \mathrm{n}^{\mathrm{n}-1}$
$f^{\prime}(x)=2 x-(a+b)+0$
$=2 \mathrm{x}-\mathrm{a}-\mathrm{b}$
(ii) $\left(a x^{2}+b\right)^{2}$

Let $\mathrm{f}(\mathrm{x})=\left(\mathrm{ax}{ }^{2}+\mathrm{b}\right)_{\sim}^{2}$
$f(x)=a^{2} x^{4}+2 a b x^{2}+b^{2}$
By differentiating both sides, we get
$f^{\prime}(x)=\frac{d}{d x}\left(a^{2} x^{4}+2 a b x^{2}+b^{2}\right)$
$f^{\prime}(x)=\frac{d}{d x}\left(x^{4}\right)+(2 a b) \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(b^{2}\right)$

We know that,
$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{X}^{\mathrm{n}}\right)=\mathrm{n} \mathrm{x}^{\mathrm{n}-1}$
$f^{\prime}(x)=a^{2} \times 4 x^{3}+2 a b \times 2 x+0$
$=4 a^{2} x^{3}+4 a b x$
$=4 \mathrm{ax}\left(\mathrm{ax}^{2}+\mathrm{b}\right)$
(iii) $x-a / x-b$

Let $f(x)=\frac{(x-a)}{(x-b)}$

By differentiating both sides and using quotient rule, we get
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-a}{x-b}\right)$
$f^{\prime}(x)=\frac{(x-b) \frac{d}{d x}(x-a)-(x-a) \frac{d}{d x}(x-b)}{(x-b)^{2}}$
$=\frac{(x-b)(1)-(x-a)(1)}{(x-b)^{2}}$

By further calculation, we get

$$
\begin{aligned}
& =\frac{x-b-x+a}{(x-b)^{2}} \\
& =\frac{a-b}{(x-b)^{2}}
\end{aligned}
$$

$$
x^{n}-a^{n}
$$

8. Find the derivative of $\mathrm{x}-\mathrm{a}$ for some constant a .

Solution:

$$
\text { Let } f(x)=\frac{x^{n}-a^{n}}{x-a}
$$

By differentiating both sides and using quotient rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{n}-a^{n}}{x-a}\right) \\
& f^{\prime}(x)=\frac{(x-a) \frac{d}{d x}\left(x^{n}-a^{n}\right)-\left(x^{n}-a^{n}\right) \frac{d}{d x}(x-a)}{(x-a)^{2}}
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =\frac{(x-a)\left(n x^{n-1}-0\right)-\left(x^{n}-a^{n}\right)}{(x-a)^{2}} \\
& =\frac{n x^{n}-a n x^{n-1}-x^{n}+a^{n}}{(x-a)^{2}}
\end{aligned}
$$

9. Find the derivative of
(i) $2 x-3 / 4$
(ii) $\left(5 x^{3}+3 x-1\right)(x-1)$
(iii) $x^{-3}(5+3 x)$
(iv) $x^{5}\left(3-6 x^{-9}\right)$
(v) $x^{-4}\left(3-4 x^{-5}\right)$
(vi) $(2 / x+1)-x^{2} / 3 x-1$

Solution:

(i)

Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-3 / 4$
By differentiating both sides, we get

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \mathrm{x}-\frac{3}{4}\right) \\
& =2 \frac{\mathrm{~d}}{\mathrm{dx}}(\mathrm{x})-\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{3}{4}\right) \\
& =2-0 \\
& =2
\end{aligned}
$$

(ii)

Let $f(x)=\left(5 x^{3}+3 x-1\right)(x-1)$
By differentiating both sides and using the product rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=\left(5 x^{3}+3 x-1\right) \frac{d}{d x}(x-1)+(x-1) \frac{d}{d x}\left(5 x^{3}+3 x+1\right) \\
& =\left(5 x^{3}+3 x-1\right) \times 1+(x-1) \times\left(15 x^{2}+3\right) \\
& =\left(5 x^{3}+3 x-1\right)+(x-1)\left(15 x^{2}+3\right) \\
& =5 x^{3}+3 x-1+15 x^{3}+3 x-15 x^{2}-3 \\
& =20 x^{3}-15 x^{2}+6 x-4 \\
& \text { (iii) }
\end{aligned}
$$

Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{-3}(5+3 \mathrm{x})$
By differentiating both sides and using Leibnitz product rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=x^{-3} \frac{d}{d x}(5+3 x)+(5+3 x) \frac{d}{d x}\left(x^{-3}\right) \\
& =x^{-3}(0+3)+(5+3 x)\left(-3 x^{-3-1}\right)
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =x^{-3}(3)+(5+3 x)\left(-3 x^{-4}\right) \\
& =3 x^{-3}-15 x^{-4}-9 x^{-3} \\
& =-6 x^{-3}-15 x^{-4} \\
& =-3 x^{-3}\left(2+\frac{5}{x}\right) \\
& =\frac{-3 x^{-3}}{x}(2 x+5) \\
& =\frac{-3}{x^{4}}(5+2 x)
\end{aligned}
$$

(iv)

Let $f(x)=x^{5}\left(3-6 x^{-9}\right)$
By differentiating both sides and using Leibnitz product rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=x^{5} \frac{d}{d x}\left(3-6 x^{-9}\right)+\left(3-6 x^{-9}\right) \frac{d}{d x}\left(x^{5}\right) \\
& =x^{5}\left\{0-6(-9) x^{-9-1}\right\}+\left(3-6 x^{-9}\right)\left(5 x^{4}\right)
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =x^{5}\left(54 x^{-10}\right)+15 x^{4}-30 x^{-5} \\
& =54 x^{-5}+15 x^{4}-30 x^{-5} \\
& =24 x^{-5}+15 x^{4} \\
& =15 x^{4}+\frac{24}{x^{5}}
\end{aligned}
$$

(v)

Let $f(x)=x^{-4}\left(3-4 x^{-5}\right)$
By differentiating both sides and using Leibnitz product rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=x^{-4} \frac{d}{d x}\left(3-4 x^{-5}\right)+\left(3-4 x^{-5}\right) \frac{d}{d x}\left(x^{-4}\right) \\
& =x^{-4}\left\{0-4(-5) x^{-5-1}\right\}+\left(3-4 x^{-5}\right)(-4) x^{-4-1}
\end{aligned}
$$

By further calculation, we get

$$
=x^{-4}\left(20 x^{-6}\right)+\left(3-4 x^{-5}\right)\left(-4 x^{-5}\right)
$$

$$
\begin{aligned}
& =20 x^{-10}-12 x^{-5}+16 x^{-10} \\
& =36 x^{-10}-12 x^{-5} \\
& =-\frac{12}{x^{5}}+\frac{36}{x^{10}}
\end{aligned}
$$

(vi)

Let

$$
f(x)=\frac{2}{x+1}-\frac{x^{2}}{3 x-1}
$$

By differentiating both sides we get,

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{2}{x+1}-\frac{x^{2}}{3 x-1}\right)
$$

Using quotient rule we get,

$$
\begin{aligned}
& f^{\prime}(x)=\left[\frac{(x+1) \frac{d}{d x}(2)-2 \frac{d}{d x}(x+1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(3 x-1)}{(3 x-1)^{2}}\right] \\
& =\left[\frac{(x+1)(0)-2(1)}{(x+1)^{2}}\right]-\left[\frac{(3 x-1)(2 x)-\left(x^{2}\right) \times 3}{(3 x-1)^{2}}\right] \\
& =-\frac{2}{(x+1)^{2}}-\left[\frac{6 x^{2}-2 x-3 x^{2}}{(3 x-1)^{2}}\right] \\
& =-\frac{2}{(x+1)^{2}}-\frac{x(3 x-2)}{(3 x-1)^{2}}
\end{aligned}
$$

10. Find the derivative of $\cos x$ from the first principle.

Solution:

Let $f(x)=\cos x$
Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=\cos (\mathrm{x}+\mathrm{h})$
By first principle, we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

So, we get

$$
=\lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos (x)]
$$

$=\lim _{\mathrm{h} \rightarrow 0} \frac{1}{\mathrm{~h}}\left[-2 \sin \left(\frac{\mathrm{x}+\mathrm{h}+\mathrm{x}}{2}\right) \sin \left(\frac{\mathrm{x}+\mathrm{h}-\mathrm{x}}{2}\right)\right]$
By further calculation, we get
$=\lim _{\mathrm{h} \rightarrow 0} \frac{1}{\mathrm{~h}}\left[-2 \sin \left(\frac{2 \mathrm{x}+\mathrm{h}}{2}\right) \sin \left(\frac{\mathrm{h}}{2}\right)\right]$
$=\lim _{h \rightarrow 0}-\sin \left(\frac{2 x+h}{2}\right) \times \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}$
$=-\sin \left(\frac{2 \mathrm{x}+0}{2}\right) \times 1$
$=-\sin (2 x / 2)$
$=-\sin (\mathrm{x})$
11. Find the derivative of the following functions.
(i) $\sin x \cos x$
(ii) $\sec x$
(iii) $5 \sec x+4 \cos x$
(iv) $\operatorname{cosec} x$
(v) $3 \cot x+5 \operatorname{cosec} x$
(vi) $5 \sin x-6 \cos x+7$
(vii) $2 \boldsymbol{\operatorname { t a n }} \mathrm{x}-7 \boldsymbol{\operatorname { s e c }} \mathrm{x}$

Solution:

(i) $\sin x \cos x$

Let $\mathrm{f}(\mathrm{x})=\sin \mathrm{x} \cos \mathrm{x}$
Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h) \cos (x+h)-\sin x \cos x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[2 \sin (x+h) \cos (x+h)-2 \sin x \cos x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}[\sin 2(x+h)-\sin 2 x] \\
& =\lim _{h \rightarrow 0} \frac{1}{2 h}\left[2 \cos \frac{2 x+2 h+2 x}{2} \cdot \sin \frac{2 x+2 h-2 x}{2}\right]
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \frac{4 x+2 h}{2} \sin \frac{2 h}{2}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\cos (2 x+h) \sin h] \\
& =\lim _{h \rightarrow 0} \cos (2 x+h) \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\cos (2 x+0) \cdot 1 \\
& =\cos 2 x
\end{aligned}
$$

(ii) $\sec x$

Let $\mathrm{f}(\mathrm{x})=\sec \mathrm{x}$
$=1 / \cos x$
By differentiating both sides, we get
$f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{\cos x}\right)$

Using quotient rule, we get
$f^{\prime}(x)=\frac{\cos x \frac{d}{d x}(1)-1 \frac{d}{d x}(\cos x)}{\cos ^{2} x}$
$=\frac{\cos x \times 0-(-\sin x)}{\cos ^{2} x}$
We get
$=\frac{\sin x}{\cos ^{2} x}$
$=\frac{\sin x}{\cos x} \times \frac{1}{\cos x}$
$=\tan \mathrm{x} \sec \mathrm{x}$
(iii) $5 \sec x+4 \cos x$

Let $f(x)=5 \sec x+4 \cos x$
By differentiating both sides, we get
$f^{\prime}(x)=\frac{d}{d x}(5 \sec x+4 \cos x)$
By further calculation, we get
$=5 \frac{d}{d x}(\sec x)+4 \frac{d}{d x}(\cos x)$
$=5 \sec x \tan x+4 \times(-\sin x)$
$=5 \sec x \tan x-4 \sin x$
(iv) $\operatorname{cosec} x$

Let $\mathrm{f}(\mathrm{x})=\operatorname{cosec} \mathrm{x}$
Accordingly $f(x+h)=\operatorname{cosec}(x+h)$
By first principle, we get
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{\operatorname{cosec}(x+h)-\operatorname{cosec} x}{h}$
$=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right)$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(\frac{-h}{2}\right)}{\sin (x+h)}\right]
\end{aligned}
$$

By further calculation, we get

$$
=\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-\sin \left(\frac{h}{2}\right) \cos \left(\frac{2 x+h}{2}\right)}{\left(\frac{h}{2}\right) \sin (x+h)}\right]
$$

$$
=-\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)}
$$

$$
=-\frac{1}{\sin x} \times 1 \times \frac{\cos \left(\frac{2 x+0}{2}\right)}{\sin (x+0)}
$$

$$
=-\frac{1}{\sin x} \times \frac{\cos x}{\sin x}
$$

$$
=-\operatorname{cosec} x \cot x
$$

(v) $3 \cot x+5 \operatorname{cosec} x$

Let $f(x)=3 \cot x+5 \operatorname{cosec} x$

$$
f^{\prime}(x)=3(\cot x)^{\prime}+5(\operatorname{cosec} x)^{\prime}
$$

Let $f_{1}(x)=\cot x$,
Accordingly $f_{1}(x+h)=\cot (x+h)$
By using first principle, we get

$$
\begin{aligned}
& f_{1}^{\prime}(x)=\lim _{x \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cot (x+h)-\cot x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right)
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right)
\end{aligned}
$$

$$
=1 / \sin x^{\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin (x+h)}\right]}
$$

$$
=-\frac{1}{\sin x}\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\sin (x+h)}\right)
$$

$$
=-\frac{1}{\sin x} \times 1 \times \frac{1}{\sin (x+0)}
$$

$$
=-\frac{1}{\sin ^{2} x}
$$

$$
=-\operatorname{cosec}^{2} x
$$

Let $f_{2}(x)=\operatorname{cosec} x$,
Accordingly $f_{2}(x+h)=\operatorname{cosec}(x+h)$
By using first principle, we get

$$
\begin{aligned}
& f_{2}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f_{2}(x+h)-f_{2}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\operatorname{cosed}(x+h)-\operatorname{cosec} x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right)
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right]
$$

By further calculation, we get
$=\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h)}\right]$
$=\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(\frac{-h}{2}\right)}{\sin (x+h)}\right]$
$=\frac{1}{\sin x} \lim _{h \rightarrow 0}\left[\frac{-\sin \left(\frac{h}{2}\right) \cos \left(\frac{2 x+h}{2}\right)}{\left(\frac{h}{2}\right) \sin (x+h)}\right]$
$=-\frac{1}{\sin x} \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)}$
$=-\frac{1}{\sin x} \times 1 \times \frac{\cos \left(\frac{2 \mathrm{x}+0}{2}\right)}{\sin (\mathrm{x}+0)}$
$=-\frac{1}{\sin x} \times \frac{\cos x}{\sin x}$
$=-\operatorname{cosec} x \cot x$
Now, substitute the value of $(\cot x)^{\prime}$ and $(\operatorname{cosec} x)^{\prime}$ in $f^{\prime}(x)$, we get

$$
\begin{aligned}
& f^{\prime}(x)=3(\cot x)^{\prime}+5(\operatorname{cosec} x)^{\prime} \\
& f^{\prime}(x)=3 x\left(-\operatorname{cosec}^{2} x\right)+5 x(-\operatorname{cosec} x \cot x) \\
& f^{\prime}(x)=-3 \operatorname{cosec}^{2} x-5 \operatorname{cosec} x \cot x \\
& (v i) 5 \sin x-6 \cos x+7
\end{aligned}
$$

Let $f(x)=5 \sin x-6 \cos x+7$
Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5 \sin (x+h)-6 \cos (x+h)+7-5 \sin x+6 \cos x-7] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[5\{\sin (x+h)-\sin x\}-6\{\cos (x+h)-\cos x\}] \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h)-\sin x]-6 \lim _{h \rightarrow 0} \frac{1}{h}[\cos (x+h)-\cos x]
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+x}{2}\right) \sin \left(\frac{x+h-x}{2}\right)\right]-6 \lim _{h \rightarrow 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\
& =5 \lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+h}{2}\right) \sin \frac{h}{2}\right]-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)-\sin x \sin h}{h}\right]
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =5 \lim _{h \rightarrow 0}\left(\cos \left(\frac{2 x+h}{2}\right) \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)-6 \lim _{h \rightarrow 0}\left[\frac{-\cos x(1-\cos h)}{h}-\frac{\sin x \sin h}{h}\right] \\
& =5\left[\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h}{2}\right)\right]\left[\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right]-6\left[(-\cos x)\left(\lim _{h \rightarrow 0} \frac{1-\cos h}{h}\right)-\sin x \lim _{h \rightarrow 0}\left(\frac{\sin h}{h}\right)\right] \\
& =5 \cos x \cdot 1-6[(-\cos x) \cdot(0)-\sin x \cdot 1] \\
& =5 \cos x+6 \sin x
\end{aligned}
$$

(vii) $2 \tan x-7 \sec x$

Let $f(x)=2 \tan x-7 \sec x$
Accordingly, from the first principle,

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2 \tan (x+h)-7 \sec (x+h)-2 \tan x+7 \sec x] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[2\{\tan (x+h)-\tan x\}-7\{\sec (x+h)-\sec x\}] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}[\tan (x+h)-\tan x]-7 \lim _{h \rightarrow 0} \frac{1}{h}[\sec (x+h)-\sec x]
\end{aligned}
$$

By further calculation, we get
$=2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right]$

$$
\begin{aligned}
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos x \cos (x+h)}\right] \\
& =2 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\cos x \cos (x+h)}\right]
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =2 \lim _{h \rightarrow 0}\left[\left(\frac{\sin h}{h}\right) \frac{1}{\cos x \cos (x+h)}\right]-7 \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \sin \left(-\frac{h}{2}\right)}{\cos x \cos (x+h)}\right] \\
& =2\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\cos x \cos (x+h)}\right)-7\left(\lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}}\right)\left(\lim _{h \rightarrow 0} \frac{\sin \left(\frac{2 x+h}{2}\right)}{\cos x \cos (x+h)}\right)
\end{aligned}
$$

$$
=2.1 \cdot \frac{1}{\cos x \cos x}-7.1\left(\frac{\sin x}{\cos x \cos x}\right)
$$

$$
=2 \sec ^{2} x-7 \sec x \tan x
$$

