## MISCELLNNEOUS EXERCISE

1. Find the derivative of the following functions from the first principle.
(i) $-x$
(ii) $(-x)^{-1}$
(iii) $\sin (x+1)$
(iv) $\cos \left(x-\frac{\pi}{8}\right)$

Solution:
(i) -X

Let $\mathrm{f}(\mathrm{x})=-\mathrm{x}$
Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=-(\mathrm{x}+\mathrm{h})$
Using first principle, we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(x+h)-(-x)}{h}
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-x-h+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h} \\
& =\lim _{h \rightarrow 0}(-1)=-1
\end{aligned}
$$

(ii) $(-x)^{-1}$

Let $f(x)=(-x)^{-1}=\frac{1}{-x}=\frac{-1}{x}$
Accordingly, $f(x+h)=\frac{-1}{(x+h)}$

Using first principle, we get

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}-\left(\frac{-1}{x}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-1}{x+h}+\frac{1}{x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+(x+h)}{x(x+h)}\right]
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-x+x+h}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{h}{x(x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{x(x+h)} \\
& =\frac{1}{x \cdot x} \\
& =1 / x^{2} \\
& \text { (iii) } \sin (x+1)
\end{aligned}
$$

Let $f(x)=\sin (x+1)$
Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=\sin (\mathrm{x}+\mathrm{h}+1)$
By using first principle, we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\begin{aligned}
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1}{h}[\sin (x+h+1)-\sin (x+1)] \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1}{\mathrm{~h}}\left[2 \cos \left(\frac{\mathrm{x}+\mathrm{h}+1+\mathrm{x}+1}{2}\right) \sin \left(\frac{\mathrm{x}+\mathrm{h}+1-\mathrm{x}-1}{2}\right)\right] \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1}{\mathrm{~h}}\left[2 \cos \left(\frac{2 \mathrm{x}+\mathrm{h}+2}{2}\right) \sin \left(\frac{\mathrm{h}}{2}\right)\right] \\
& =\lim _{\mathrm{h} \rightarrow 0}\left[\cos \left(\frac{2 \mathrm{x}+\mathrm{h}+2}{2}\right) \cdot \frac{\sin \left(\frac{\mathrm{h}}{2}\right)}{\left(\frac{\mathrm{h}}{2}\right)}\right]
\end{aligned}
$$

We get,

$$
=\lim _{h \rightarrow 0} \cos \left(\frac{2 x+h+2}{2}\right) \cdot \lim _{\substack{h \\ 2}} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}
$$

We know that,

$$
\mathrm{h} \rightarrow 0 \Rightarrow \frac{\mathrm{~h}}{2} \rightarrow 0
$$

$$
=\cos \left(\frac{2 x+0+2}{2}\right) \cdot 1
$$

$$
=\cos (x+1)
$$

(iv) $\cos \left(x-\frac{\pi}{8}\right)$

Let $f(x)=\cos \left(x-\frac{\pi}{8}\right)$

$$
\text { Accordingly, } \mathrm{f}(\mathrm{x}+\mathrm{h})=\cos \left(\mathrm{x}+\mathrm{h}-\frac{\pi}{8}\right)
$$

By using first principle, we get

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\cos \left(x+h-\frac{\pi}{8}\right)-\cos \left(x-\frac{\pi}{8}\right)\right]
\end{aligned}
$$

We get,

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \frac{\left(x+h-\frac{\pi}{8}+x-\frac{\pi}{8}\right)}{2} \sin \left(\frac{x+h-\frac{\pi}{8}-x+\frac{\pi}{8}}{2}\right)\right]
$$

## Further we get,

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[-2 \sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right) \sin \frac{h}{2}\right]
$$

So,

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right] \\
& =\lim _{h \rightarrow 0}\left[-\sin \left(\frac{2 x+h-\frac{\pi}{4}}{2}\right)\right] \cdot \lim _{\frac{h}{2} \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\text { As h } \rightarrow 0 \Rightarrow \frac{\mathrm{~h}}{2} \rightarrow 0\right] } \\
= & -\sin \left(\frac{2 \mathrm{x}+0-\frac{\pi}{4}}{2}\right) \cdot 1
\end{aligned}
$$

Hence, we get

$$
=-\sin \left(x-\frac{\pi}{8}\right)
$$

Find the derivative of the following functions. (It is to be understood that $a, b, c, d, p, q, r$ and $s$ are fixed non-zero constants, and $m$ and $n$ are integers.)
2. $(x+a)$

Solution:
Let $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{a}$
Accordingly, $\mathrm{f}(\mathrm{x}+\mathrm{h})=\mathrm{x}+\mathrm{h}+\mathrm{a}$
Using first principle, we get

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

So, now we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h+a-x-a}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{h}{h}\right) \\
& =\lim _{h \rightarrow 0}(1) \\
& =1
\end{aligned}
$$

3. $(p x+q)(r / x+s)$

## Solution:

Let $f(x)=(p x+q)\left(\frac{r}{x}+s\right)$
Using Leibnitz product rule, we get

$$
f^{\prime}(x)=(p x+q)\left(\frac{r}{x}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p x+q)^{\prime}
$$

We get,

$$
=(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\frac{r}{x}+s\right)(p)
$$

By further calculation, we get

$$
\begin{aligned}
& =(p x+q)\left(-r x^{-2}\right)+\left(\frac{r}{x}+s\right) p \\
& =(p x+q)\left(\frac{-r}{x^{2}}\right)+\left(\frac{r}{x}+s\right) p
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =\frac{-p r}{x}-\frac{q r}{x^{2}}+\frac{p r}{x}+p s \\
& =p s-\frac{q r}{x^{2}}
\end{aligned}
$$

4. $(a x+b)(c x+d)^{2}$

## Solution:

Let $f(x)=(a x+b)(c x+d)^{2}$
By using Leibnitz product rule, we get

$$
f^{\prime}(x)=(a x+b) \frac{d}{d x}(c x+d)^{2}+(c x+d)^{2} \frac{d}{d x}(a x+b)
$$

We get,

$$
=(a x+b) \frac{d}{d x}\left(c^{2} x^{2}+2 c d x+d^{2}\right)+(c x+d)^{2} \frac{d}{d x}(a x+b)
$$

By differentiating separately, we get

$$
=(a x+b)\left[\frac{d}{d x}\left(c^{2} x^{2}\right)+\frac{d}{d x}(2 c d x)+\frac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\frac{d}{d x} a x+\frac{d}{d x} b\right]
$$

So,

$$
\begin{aligned}
& =(a x+b)\left(2 c^{2} x+2 c d\right)+\left(c x+d^{2}\right) a \\
& =2 c(a x+b)(c x+d)+a(c x+d)^{2}
\end{aligned}
$$

5. $(a x+b) /(c x+d)$

Solution:
Let $f(x)=\frac{a x+b}{c x+d}$
Using quotient rule, we get

$$
f^{\prime}(x)=\frac{(c x+d) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}(c x+d)}{(c x+d)^{2}}
$$

## Further we get

$$
=\frac{(c x+d)(a)-(a x+b)(c)}{(c x+d)^{2}}
$$

So, now we get

$$
=\frac{a c x+a d-a c x-b c}{(c x+d)^{2}}
$$

## Hence,

$=\frac{a d-b c}{(c x+d)^{2}}$
6. $(1+1 / x) /(1-1 / x)$

## Solution:

Let $f(x)=\frac{1+\frac{1}{x}}{1-\frac{1}{x}}=\frac{\frac{x+1}{x}}{\frac{x-1}{x}}=\frac{x+1}{x-1}$, where $x \neq 0$
Using quotient rule, we get

$$
f^{\prime}(x)=\frac{(x-1) \frac{d}{d x}(x+1)-(x+1) \frac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1
$$

Further, we get

$$
=\frac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1
$$

So,

$$
\begin{aligned}
& =\frac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1 \\
& =\frac{-2}{(x-1)^{2}}, x \neq 0,1
\end{aligned}
$$

7. 1 / $\left(a x^{2}+b x+c\right)$

## Solution:

$$
\text { Let } f(x)=\frac{1}{a x^{2}+b x+c}
$$

Using quotient rule, we get

$$
f^{\prime}(x)=\frac{\left(a x^{2}+b x+c\right) \frac{d}{d x}(1)-\frac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}}
$$

By further calculation, we get

$$
\begin{aligned}
& =\frac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

$$
\text { 8. }(a x+b) / p x^{2}+q x+r
$$

## Solution:

$$
\text { Let } f(x)=\frac{a x+b}{p x^{2}+q x+r}
$$

Using quotient rule, we get

$$
f^{\prime}(x)=\frac{\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)-(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}}
$$

Further we get,

$$
=\frac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}}
$$

Again by further calculation, we get

$$
\begin{aligned}
& =\frac{a p x^{2}+a q x+a r-2 a p x^{2}-a q x-2 b p x-b q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{-a p x^{2}-2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}
\end{aligned}
$$

9. $\left(p x^{2}+q x+r\right) / a x+b$

## Solution:

Let $f(x)=\frac{p x^{2}+q x+r}{a x+b}$

Using quotient rule, we get

$$
f^{\prime}(x)=\frac{(a x+b) \frac{d}{d x}\left(p x^{2}+q x+r\right)-\left(p x^{2}+q x+r\right) \frac{d}{d x}(a x+b)}{(a x+b)^{2}}
$$

By further calculation, we get

$$
=\frac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}}
$$

So, we get

$$
\begin{aligned}
& =\frac{2 a p x^{2}+a q x+2 b p x+b q-a p x^{2}-a q x-a r}{(a x+b)^{2}} \\
& =\frac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}
\end{aligned}
$$

10. $\left(a / x^{4}\right)-\left(b / x^{2}\right)+\cos x$

Solution:
Let $f(x)=\frac{a}{x^{4}}-\frac{b}{x^{2}}+\cos x$

By differentiating we get,

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{a}{x^{4}}\right)-\frac{d}{d x}\left(\frac{b}{x^{2}}\right)+\frac{d}{d x}(\cos x)
$$

## On further calculation, we get

$$
=a \frac{d}{d x}\left(x^{-4}\right)-b \frac{d}{d x}\left(x^{-2}\right)+\frac{d}{d x}(\cos x)
$$

We know that,

$$
\left[\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \text { and } \frac{d}{d x}(\cos x)=-\sin x\right]
$$

So,

$$
\begin{aligned}
& =a\left(-4 x^{-5}\right)-b\left(-2 x^{-3}\right)+(-\sin x) \\
& =\frac{-4 a}{x^{3}}+\frac{2 b}{x^{3}}-\sin x
\end{aligned}
$$

11. $4 \sqrt{x}-2$

## Solution:

$$
\text { Let } f(x)=4 \sqrt{x}-2
$$

By differentiating we get,

$$
f^{\prime}(x)=\frac{d}{d x}(4 \sqrt{x}-2)=\frac{d}{d x}(4 \sqrt{x})-\frac{d}{d x}(2)
$$

Further, we get
$=4 \frac{d}{d x}\left(x^{\frac{1}{2}}\right)-0$
$=4\left(\frac{1}{2} x^{\frac{1}{2}-1}\right)$
$=\left(2 x^{-\frac{1}{2}}\right)$
$=\frac{2}{\sqrt{x}}$
12. $(a x+b)^{n}$

## Solution:

Let $f(x)=(a x+b)^{n}$

Accordingly, $f(x+h)=\{a(x+h)+b\}^{n}=(a x+a h+b)^{n}$
Using first principle, we get

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a x+a h+b)^{n}-(a x+b)^{n}}{h}
\end{aligned}
$$

Further we get,

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(a x+b)^{n}\left(1+\frac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h} \\
& =(a x+b)^{n} \lim _{h \rightarrow 0} \frac{\left(1+\frac{a h}{a x+b}\right)^{n}-1}{h}
\end{aligned}
$$

By using binomial theorem, we get

$$
=(a x+b)^{n} \lim _{b \rightarrow 0} \frac{1}{n}\left[\left\{1+n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1)}{\underline{2}}\left(\frac{a h}{a x+b}\right)^{2}+\ldots\right\}-1\right]
$$

Now, we get

$$
=(a x+b)^{n} \lim _{b \rightarrow 0} \frac{1}{h}\left[n\left(\frac{a h}{a x+b}\right)+\frac{n(n-1) a^{2} h^{2}}{\left\lfloor 2(a x+b)^{2}\right.}+\ldots(\text { Terms containing higher degrees of } h)\right]
$$

So, we get

$$
=(a x+b)^{n} \lim _{h \rightarrow 0}\left[\frac{n a}{(a x+b)}+\frac{n(n-1) a^{2} h}{12(a x+b)^{2}}+\ldots\right]
$$

On further calculation, we get

$$
\begin{aligned}
& =(a x+b)^{n}\left[\frac{n a}{(a x+b)}+0\right] \\
& =n a \frac{(a x+b)^{n}}{(a x+b)} \\
& =n a(a x+b)^{n-1}
\end{aligned}
$$

13. $(a x+b)^{n}(c x+d)^{m}$

## Solution:

$$
\text { Let } f(x)=(a x+b)^{n}(c x+d)^{n}
$$

By using Leibnitz product rule, we get

$$
f^{\prime}(x)=(a x+b)^{n} \frac{d}{d x}(c x+d)^{m \prime}+(c x+d)^{m} \frac{d}{d x}(a x+b)^{n}
$$

let $f_{1}(x)=(c x+d)^{m}$

$$
f_{1}(x+h)=(c x+c h+d)^{m}
$$

Then,

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(c x+c h+d)^{m}-(c x+d)^{m}}{h}
\end{aligned}
$$

By taking ( $c x+d$ ) ${ }_{m}^{m}$ as common, we get

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{c h}{c x+d}\right)^{m}-1\right]
$$

On further calculation, we get

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\left(1+\frac{m c h}{(c x+d)}+\frac{m(m-1)}{2} \frac{\left(c^{2} h^{2}\right)}{(c x+d)^{2}}+\ldots\right)-1\right]
$$

Now, we get

$$
=(c x+d)^{m} \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{m c h}{(c x+d)}+\frac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\ldots(\text { Terms containing higher degrees of } h)\right]
$$

We know that,

$$
\frac{d}{d x}(c x+d)^{\prime \prime \prime}=m c(c x+d)^{m-1}
$$

Similarly, $\frac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$

$$
=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\frac{m c}{(c x+d)}+\frac{m(m-1) c^{2} h}{2(c x+d)^{2}}+\ldots\right]
$$

Now, we get

$$
\begin{aligned}
& =(c x+d)^{m \prime}\left[\frac{m c}{c x+d}+0\right] \\
& =\frac{m c(c x+d)^{m}}{(c x+d)} \\
& =m c(c x+d)^{m-1}
\end{aligned}
$$

The Learning App
Hence, we get

$$
\begin{aligned}
f^{\prime}(x) & =(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c x+d)^{m}\left\{n a(a x+b)^{n-1}\right\} \\
& =(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]
\end{aligned}
$$

14. $\sin (x+a)$

## Solution:

$$
\begin{aligned}
& \text { Let } f(x)=\sin (x+a) \\
& f(x+h)=\sin (x+h+a)
\end{aligned}
$$

## By using first principle, we get

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x+h+a)-\sin (x+a)}{h}
\end{aligned}
$$

On further calculation, we get

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right]
$$

So, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right]
\end{aligned}
$$

The Learning App

## By taking limits, we get

$$
=\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}
$$

Hence, we get

$$
\begin{aligned}
& =\cos \left(\frac{2 x+2 a}{2}\right) \times 1 \\
& =\cos (x+a)
\end{aligned}
$$

15. $\operatorname{cosec} x \cot x$

## Solution:

Let $f(x)=\operatorname{cosec} x \cot x$
By using Leibnitz product rule, we get

$$
\begin{equation*}
f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime} \tag{1}
\end{equation*}
$$

Let $f_{1}(x)=\cot x$.

Accordingly, $f_{1}(x+h)=\cot (x+h)$
By using first principle, we get

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{1}(x+h)-f_{1}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\cot (x+h)-\cot x}{h}
\end{aligned}
$$

On further calculation, we get

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{\cos (x+h)}{\sin (x+h)}-\frac{\cos x}{\sin x}\right)
$$

## Now, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x-x-h)}{\sin x \sin (x+h)}\right]
\end{aligned}
$$

We get

$$
\begin{aligned}
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (-h)}{\sin (x+h)}\right] \\
& =\frac{-1}{\sin x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right)\left(\lim _{h \rightarrow 0} \frac{1}{\sin (x+h)}\right)
\end{aligned}
$$

So, we get
$=\frac{-1}{\sin x} \cdot 1 \cdot\left(\frac{1}{\sin (x+0)}\right)$
$=\frac{-1}{\sin ^{2} x}$
$=-\operatorname{cosec}^{2} x$
Hence, we get
$(\cot x)^{\prime}=-\operatorname{cosec}^{2} x$
Now, let $f_{2}(x)=\operatorname{cosec} x$. Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$
By using first principle, we get

$$
\begin{aligned}
f_{2}^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f_{2}(x+h)-f_{2}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec} x]
\end{aligned}
$$

## By calculating further, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\sin (x+h)}-\frac{1}{\sin x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right]
\end{aligned}
$$

So,

$$
\begin{aligned}
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{x+x+h}{2}\right) \sin \left(\frac{x-x-h}{2}\right)}{\sin (x+h)}\right] \\
& =\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{2 \cos \left(\frac{2 x+h}{2}\right) \sin \left(\frac{-h}{2}\right)}{\sin (x+h)}\right]
\end{aligned}
$$

$$
=\frac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\frac{-\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)}\right]
$$

We get,

$$
\begin{aligned}
& =\frac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim _{h \rightarrow 0} \frac{\cos \left(\frac{2 x+h}{2}\right)}{\sin (x+h)} \\
& =\frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos \left(\frac{2 x+0}{2}\right)}{\sin (x+0)} \\
& =\frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
& =-\cos \mathrm{ec} x \cdot \cot x
\end{aligned}
$$

## Hence,



From equations (1) (2) and (3) we get,

$$
\begin{aligned}
f^{\prime}(x) & =\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x) \\
& =-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x
\end{aligned}
$$

16. $\frac{\cos x}{1+\sin x}$

## Solution:

Let $f(x)=\frac{\cos x}{1+\sin x}$
By using quotient rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\sin x) \frac{d}{d x}(\cos x)-(\cos x) \frac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}}
\end{aligned}
$$

We get,

$$
\begin{aligned}
& =\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}}
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =\frac{-\sin x-1}{(1+\sin x)^{2}} \\
& =\frac{-(1+\sin x)}{(1+\sin x)^{2}} \\
& =\frac{-1}{(1+\sin x)}
\end{aligned}
$$

17. 

$\frac{\sin x+\cos x}{\sin x-\cos x}$

## Solution:

$$
\text { Let } f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}
$$

By differentiating and using quotient rule, we get

$$
f^{\prime}(x)=\frac{(\sin x-\cos x) \frac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \frac{d}{d x}(\sin x-\cos x)}{(\sin x-\cos x)^{2}}
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \\
& =\frac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x-\cos x)^{2}}
\end{aligned}
$$

By expanding the terms, we get

$$
=\frac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x-\cos x)^{2}}
$$

We get

$$
\begin{aligned}
& =\frac{-[1+1]}{(\sin x-\cos x)^{2}} \\
& =\frac{-2}{(\sin x-\cos x)^{2}}
\end{aligned}
$$

18. 

$\frac{\sec x-1}{\sec x+1}$

## Solution:

$$
\text { Let } f(x)=\frac{\sec x-1}{\sec x+1}
$$

Now, this can be written as

$$
f(x)=\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1}=\frac{1-\cos x}{1+\cos x}
$$

By differentiating and using quotient rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(1+\cos x) \frac{d}{d x}(1-\cos x)-(1-\cos x) \frac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}} \\
& =\frac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}
\end{aligned}
$$

On multiplying we get

$$
\begin{aligned}
& =\frac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}} \\
& =\frac{2 \sin x}{(1+\cos x)^{2}}
\end{aligned}
$$

This can be written as

$$
=\frac{2 \sin x}{\left(1+\frac{1}{\sec x}\right)^{2}}
$$

On taking L.C.M we get

$$
=\frac{2 \sin x}{\frac{(\sec x+1)^{2}}{\sec ^{2} x}}
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{2 \sin x \sec ^{2} x}{(\sec x+1)^{2}} \\
& =\frac{\frac{2 \sin x}{\cos x} \sec x}{(\sec x+1)^{2}} \\
& =\frac{2 \sec x \tan x}{(\sec x+1)^{2}}
\end{aligned}
$$

19. $\sin ^{n} x$

## Solution:

Let $y=\sin ^{n} x$.
Accordingly, for $n=1, y=\sin x$.
We know that,
$\frac{d y}{d x}=\cos x$, i.e., $\frac{d}{d x} \sin x=\cos x$
For $n=2, y=\sin ^{2} x$.
So, $\frac{d y}{d x}=\frac{d}{d x}(\sin x \sin x)$
By Leibnitz product rule, we get
$=(\sin x)^{\prime} \sin x+\sin x(\sin x)^{\prime}$
$=\cos x \sin x+\sin x \cos x$
$=2 \sin x \cos x$

For $n=3, y=\sin ^{3} x$.
So, $\frac{d y}{d x}=\frac{d}{d x}\left(\sin x \sin ^{2} x\right)$
By Leibnitz product rule, we get

$$
=(\sin x)^{\prime} \sin ^{2} x+\sin x\left(\sin ^{2} x\right)^{\prime}
$$

From equation (1) we get

$$
=\cos x \sin ^{2} x+\sin x(2 \sin x \cos x)
$$

$=\cos x \sin ^{2} x+2 \sin ^{2} x \cos x$
$=3 \sin ^{2} x \cos x$
We state that, $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
For $\mathrm{n}=\mathrm{k}$, let our assertion be true

$$
\begin{equation*}
\text { i.e., } \frac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x \tag{2}
\end{equation*}
$$

Now, consider

$$
\frac{d}{d x}\left(\sin ^{k+1} x\right)=\frac{d}{d x}\left(\sin x \sin ^{k} x\right)
$$

By using Leibnitz product rule, we get

$$
=(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{\prime}
$$

From equation (2) we get

$$
\begin{aligned}
& =\cos x \sin ^{k} x+\sin x\left(k \sin ^{(k-1)} x \cos x\right) \\
& =\cos x \sin ^{k} x+k \sin ^{k} x \cos x \\
& =(k+1) \sin ^{k} x \cos x
\end{aligned}
$$

Hence, our assertion is true for $\mathrm{n}=\mathrm{k}+1$

Therefore,
by mathematical induction, $\frac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
20. $\frac{a+b \sin x}{c+d \cos x}$

## Solution:

Let $f(x)=\frac{a+b \sin x}{c+d \cos x}$
By differentiating and using quotient rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(c+d \cos x) \frac{d}{d x}(a+b \sin x)-(a+b \sin x) \frac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}} \\
& =\frac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}}
\end{aligned}
$$

On multiplying we get

$$
=\frac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}}
$$

Now, taking bd as common we get

$$
\begin{aligned}
& =\frac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(c+d \cos x)^{2}} \\
& =\frac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}
\end{aligned}
$$

21. 

$$
\sin (x+a)
$$

$\cos x$

## Solution:

Let $f(x)=\frac{\sin (x+a)}{\cos x}$
By differentiating and using quotient rule, we get
$f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a) \frac{d}{d x} \cos x}{\cos ^{2} x}$
$f^{\prime}(x)=\frac{\cos x \frac{d}{d x}[\sin (x+a)]-\sin (x+a)(-\sin x)}{\cos ^{2} x}$
Let $g(x)=\sin (x+a)$. Accordingly, $g(x+h)=\sin (x+h+a)$
By using first principle, we get

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h}[\sin (x+h+a)-\sin (x+a)]
\end{aligned}
$$

On further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{x+h+a+x+a}{2}\right) \sin \left(\frac{x+h+a-x-a}{2}\right)\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[2 \cos \left(\frac{2 x+2 a+h}{2}\right) \sin \left(\frac{h}{2}\right)\right] \\
& =\lim _{h \rightarrow 0}\left[\cos \left(\frac{2 x+2 a+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}\right]
\end{aligned}
$$

Now, taking limits we get

$$
=\lim _{h \rightarrow 0} \cos \left(\frac{2 x+2 a+h}{2}\right) \cdot \lim _{\frac{h}{2} \rightarrow 0}\left\{\frac{\sin \left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \frac{h}{2} \rightarrow 0\right]
$$

We know that,

$$
\begin{align*}
& {\left[\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right]} \\
& =\left(\cos \frac{2 x+2 a}{2}\right) \times 1 \\
& =\cos (x+a) \tag{ii}
\end{align*}
$$

From equation (i) and (ii) we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\cos x \cdot \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x} \\
& =\frac{\cos (x+a-x)}{\cos ^{2} x} \\
& =\frac{\cos a}{\cos ^{2} x}
\end{aligned}
$$

22. $x^{4}(5 \sin x-3 \cos x)$

## Solution:

$$
\text { Let } f(x)=x^{4}(5 \sin x-3 \cos x)
$$

By differentiating and using product rule, we get

$$
f^{\prime}(x)=x^{4} \frac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{4}\right)
$$

On further calculation, we get

$$
=x^{+}\left[5 \frac{d}{d x}(\sin x)-3 \frac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \frac{d}{d x}\left(x^{+}\right)
$$

So, we get

$$
=x^{+}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right)
$$

By taking $\mathrm{x}^{3}$ as common, we get

$$
=x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]
$$

23. $\left(x^{2}+1\right) \cos x$

Solution:
Let $f(x)=\left(x^{2}+1\right) \cos x$
By differentiating and using product rule, we get

$$
f^{\prime}(x)=\left(x^{2}+1\right) \frac{d}{d x}(\cos x)+\cos x \frac{d}{d x}\left(x^{2}+1\right)
$$

On further calcualtion, we get

$$
=\left(x^{2}+1\right)(-\sin x)+\cos x(2 x)
$$

## By multiplying we get

$$
=-x^{2} \sin x-\sin x+2 x \cos x
$$

24. $\left(a x^{2}+\sin x\right)(p+q \cos x)$

Solution:
Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$
By differentiating and using product rule, we get

$$
f^{\prime}(x)=\left(a x^{2}+\sin x\right) \frac{d}{d x}(p+q \cos x)+(p+q \cos x) \frac{d}{d x}\left(a x^{2}+\sin x\right)
$$

On further calculation, we get

$$
\begin{aligned}
& =\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x) \\
& =-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)
\end{aligned}
$$

25. $(x+\cos x)(x-\tan x)$

## Solution:

$$
\text { Let } f(x)=(x+\cos x)(x-\tan x)
$$

## By differentiating and using product rule, we get

$$
\begin{aligned}
& f^{\prime}(x)=(x+\cos x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\cos x) \\
& =(x+\cos x)\left[\frac{d}{d x}(x)-\frac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)
\end{aligned}
$$

Now, we get

$$
\begin{equation*}
=(x+\cos x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)(1-\sin x) \tag{i}
\end{equation*}
$$

Let $g(x)=\tan x$. Accordingly, $g(x+h)=\tan (x+h)$
By using first principle, we get

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right)
\end{aligned}
$$

On further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right]
\end{aligned}
$$

Now, we get

$$
\begin{aligned}
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h)}\right]
\end{aligned}
$$

So, we get

$$
=\frac{1}{\cos x} \cdot\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h)}\right)
$$

We get

$$
\begin{align*}
& =\frac{1}{\cos x} \cdot 1 \cdot \frac{1}{\cos (x+0)} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x \tag{ii}
\end{align*}
$$

Hence, from equation (i) and (ii) we get

$$
\begin{aligned}
f^{\prime}(x) & =(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x) \\
& =-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)
\end{aligned}
$$

26. $\frac{4 x+5 \sin x}{3 x+7 \cos x}$

## Solution:

$$
\text { Let } f(x)=\frac{4 x+5 \sin x}{3 x+7 \cos x}
$$

By differentiating and using quotient rule, we get

$$
f^{\prime}(x)=\frac{(3 x+7 \cos x) \frac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \frac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}}
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{(3 x+7 \cos x)\left[4 \frac{d}{d x}(x)+5 \frac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \frac{d}{d x} x+7 \frac{d}{d x} \cos x\right]}{(3 x+7 \cos x)^{2}} \\
& =\frac{(3 x+7 \cos x)(4+5 \cos x)-(4 x+5 \sin x)(3-7 \sin x)}{(3 x+7 \cos x)^{2}}
\end{aligned}
$$

On multiplying we get

$$
=\frac{12 x+15 x \cos x+28 \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35 \sin ^{2} x}{(3 x+7 \cos x)^{2}}
$$

We get
$=\frac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$
$=\frac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}$
27. $\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}$

Solution:

$$
\text { Let } f(x)=\frac{x^{2} \cos \left(\frac{\pi}{4}\right)}{\sin x}
$$

By differentiating and using quotient rule, we get

$$
f^{\prime}(x)=\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(\sin x)}{\sin ^{2} x}\right]
$$

By further calculation, we get

$$
=\cos \frac{\pi}{4} \cdot\left[\frac{\sin x \cdot 2 x-x^{2} \cos x}{\sin ^{2} x}\right]
$$

By taking x as common, we get

$$
=\frac{x \cos \frac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}
$$

28. $\frac{x}{1+\tan x}$

## Solution:

$$
\text { Let } f(x)=\frac{x}{1+\tan x}
$$

By differentiating and using quotient rule, we get

$$
\begin{align*}
& f^{\prime}(x)=\frac{(1+\tan x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \\
& f^{\prime}(x)=\frac{(1+\tan x)-x \cdot \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \tag{i}
\end{align*}
$$

Let $g(x)=1+\tan x$. Accordingly, $g(x+h)=1+\tan (x+h)$.
Using first principle, we get

$$
\begin{aligned}
g^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left[\frac{1+\tan (x+h)-1-\tan x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]
\end{aligned}
$$

By taking L.C.M we get

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right]
$$

We get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right]
\end{aligned}
$$

So, we get

$$
\begin{aligned}
& =\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right) \\
& =1 \times \frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

$$
\begin{equation*}
\frac{d}{d x}(1+\tan x)=\sec ^{2} x \tag{ii}
\end{equation*}
$$

From equation (i) and (ii) we get
$f^{\prime}(x)=\frac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}$
29. $(x+\sec x)(x-\tan x)$

Solution:

The Learning App
Let $f(x)=(x+\sec x)(x-\tan x)$
By differentiating and using product rule, we get

$$
f^{\prime}(x)=(x+\sec x) \frac{d}{d x}(x-\tan x)+(x-\tan x) \frac{d}{d x}(x+\sec x)
$$

## So, we get

$$
=(x+\sec x)\left[\frac{d}{d x}(x)-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[\frac{d}{d x}(x)+\frac{d}{d x} \sec x\right]
$$

$=(x+\sec x)\left[1-\frac{d}{d x} \tan x\right]+(x-\tan x)\left[1+\frac{d}{d x} \sec x\right]$
Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$
Accordingly, $f_{1}(x+h)=\tan (x+h)$ and $f_{2}(x+h)=\sec (x+h)$

$$
\begin{aligned}
f_{1}^{\prime}(x) & =\lim _{h \rightarrow 0}\left(\frac{f_{1}(x+h)-f_{1}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\tan (x+h)-\tan x}{h}\right)
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0}\left[\frac{\tan (x+h)-\tan x}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h)}{\cos (x+h)}-\frac{\sin x}{\cos x}\right]
\end{aligned}
$$

Now, by taking L.C.M we get

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin (x+h-x)}{\cos (x+h) \cos x}\right] \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\sin h}{\cos (x+h) \cos x}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\lim _{h \rightarrow 0} \frac{\sin h}{h}\right) \cdot\left(\lim _{h \rightarrow 0} \frac{1}{\cos (x+h) \cos x}\right) \\
& =1 \times \frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\frac{d}{d x} \tan x=\sec ^{2} x \tag{ii}
\end{equation*}
$$

Now, take

$$
\begin{aligned}
f_{2}^{\prime}(x)= & \lim _{h \rightarrow 0}\left(\frac{f_{2}(x+h)-f_{2}(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{\sec (x+h)-\sec x}{h}\right)
\end{aligned}
$$

This can be written as

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{\cos (x+h)}-\frac{1}{\cos x}\right]
$$

By taking L.C.M we get

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right]
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{x+x+h}{2}\right) \cdot \sin \left(\frac{x-x-h}{2}\right)}{\cos (x+h)}\right] \\
& =\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{-2 \sin \left(\frac{2 x+h}{2}\right) \cdot \sin \left(\frac{-h}{2}\right)}{\cos (x+h)}\right]
\end{aligned}
$$

## We get

$$
=\frac{1}{\cos x} \cdot \lim _{h \rightarrow 0}\left[\frac{\sin \left(\frac{2 x+h}{2}\right)\left\{\frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}\right\}}{\cos (x+h)}\right]
$$

By taking limits, we get


We get

$$
\begin{gather*}
=\sec x \cdot \frac{\sin x \cdot 1}{\cos x} \\
\frac{d}{d x} \sec x=\sec x \tan x \tag{iii}
\end{gather*}
$$

From equation (i) (ii) and (iii) we get

$$
f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)
$$

30. $\frac{x}{\sin ^{n} x}$

## Solution:

$$
\text { Let } f(x)=\frac{x}{\sin ^{n} x}
$$

By differentiating and using quotient rule, we get

$$
f^{\prime}(x)=\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}
$$

Easily, it can be shown that,
$\frac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$

Hence,

$$
f^{\prime}(x)=\frac{\sin ^{n} x \frac{d}{d x} x-x \frac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}
$$

By further calculation, we get

$$
=\frac{\sin ^{n} x \cdot 1-x\left(n \sin ^{n-1} x \cos x\right)}{\sin ^{2 n} x}
$$

By taking common terms, we get

$$
=\frac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x}
$$

Hence, we get
$=\frac{\sin x-n x \cos x}{\sin ^{n+1} x}$

