Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The effective resistance in the following circuit across terminal A and B is equal to

(1) 5Ω
(2) 10Ω
(3) 20Ω
(4) 40Ω

Answer (1)
Sol. Equivalent circuit

$\frac{1}{R}=\frac{1}{10}+\frac{1}{20}+\frac{1}{20}$
$\Rightarrow R=5 \Omega$
2. If the emf generated in the moving rod in uniform magnetic field B is 0.08 V , then find the speed (v) of the rod.
$\otimes B=0.4 \mathrm{~T}$

(1) $1 \mathrm{~m} / \mathrm{s}$
(2) $2 \mathrm{~m} / \mathrm{s}$
(3) $3 \mathrm{~m} / \mathrm{s}$
(4) $4 \mathrm{~m} / \mathrm{s}$

Answer (2)
Sol. $\varepsilon=B / v$
$v=\frac{\varepsilon}{B I}=\frac{0.08 \times 100}{0.4 \times 10}=2 \mathrm{~m} / \mathrm{s}$
3. Which of the following expressions give the value of acceleration due to gravity (g^{\prime}) at the altitude h above the surface of earth. (R : radius of earth, g : acceleration due to gravity at surface of earth)
(1) $g^{\prime}=g \frac{h^{2}}{R^{2}}$
(2) $g^{\prime}=\frac{g R^{2}}{(R+h)^{2}}$
(3) $g^{\prime}=g\left(1-\frac{h}{R}\right)$
(4) $g^{\prime}=g\left(1-\frac{h^{2}}{R^{2}}\right)$

Answer (2)
Sol. $g^{\prime}=\frac{G M_{e}}{(R+h)^{2}}$

$$
g^{\prime}=\frac{g R^{2}}{(R+h)^{2}}
$$

4. Find the distance from a point charge of magnitude $5 \times 10^{-9} \mathrm{C}$, where the electric potential is 50 V
(1) 90 cm
(2) 70 cm
(3) 60 cm
(4) 50 cm

Answer (1)
Sol. $V=\frac{k Q}{r}$
$50=\frac{9 \times 10^{9} \times 5 \times 10^{-9}}{r}$
$r=0.9 \mathrm{~m}$
5. Match column I with column II and choose the correct option.

	Column I		Column II
I.	Torque	a.	$\mathrm{M}^{0} \mathrm{LT}^{-2}$
II.	Stress	b.	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
III.	Coefficient of viscosity	c.	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
IV.	Gravitational potential gradient	d.	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$

(1) I \rightarrow a, II \rightarrow c, III \rightarrow b, IV \rightarrow d
(2) I $\rightarrow \mathrm{d}$, II $\rightarrow \mathrm{b}, \mathrm{III} \rightarrow \mathrm{c}, \mathrm{IV} \rightarrow \mathrm{a}$
(3) I $\rightarrow \mathrm{d}, \mathrm{II} \rightarrow \mathrm{c}, \mathrm{III} \rightarrow \mathrm{b}, \mathrm{IV} \rightarrow \mathrm{a}$
(4) I $\rightarrow \mathrm{a}, \mathrm{II} \rightarrow \mathrm{c}, \mathrm{III} \rightarrow \mathrm{d}, \mathrm{IV} \rightarrow \mathrm{b}$

Answer (3)
Sol. Torque $=r \times F=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Stress $=\frac{F}{A}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
Coefficient of viscosity $=\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
Gravitational potential gradient $=\mathrm{M}^{0} \mathrm{LT}^{-2}$
6. Which of the following is the highest energy electromagnetic wave?
(1) X-rays
(2) Infra Red
(3) Microwaves
(4) Radiowave

Answer (1)

Sol. Since out of the given options, X-rays have the highest frequency.
\Rightarrow Option (1) is correct
7. A carnot engine working between $27^{\circ} \mathrm{C}$ and 127° performs 2 kJ of work. The amount of heat energy rejected is equal to
(1) 4 kJ
(2) 6 kJ
(3) 8 kJ
(4) 12 kJ

Answer (2)
Sol. $2 \mathrm{~kJ}=x\left(1-\frac{300}{400}\right)$
$2 \mathrm{~kJ}=\frac{x}{4}$
$\Rightarrow \quad x=8 \mathrm{~kJ}$
\Rightarrow Heat lost $=6 \mathrm{~kJ}$
8. Statement-I: Electromagnet are made of soft iron.

Statement-II: Soft iron has lower permeability and high retentivity.
Choose the correct option related to statements.
(1) Statement-I is true and statement-II is true
(2) Statement-I is true and statement-II is false
(3) Statement-I is false and statement-II is true
(4) Statement-I is false and statement-II is false

Answer (2)

Sol. Soft iron has low retentivity and high permeability.
9. If a satellite is orbiting the earth at a height h (from the centre of earth) has angular momentum ' L '. Then, the same satellite at a height 10 times ' h ' will have angular momentum equal to
(1) $\sqrt{10} L$
(2) $\sqrt{5} L$
(3) $3 L$
(4) $\sqrt{20} L$

Answer (1)
Sol. $\because \quad \frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$
$\Rightarrow m^{2} v^{2} r^{2}=G M m r$
$L^{2} \propto r$
$\therefore \quad \frac{L_{1}}{L_{2}}=\sqrt{\frac{h}{10 h}}$
$\Rightarrow \quad L_{2}=\sqrt{10} L$
10. Consider 2 statements:

Statement 1: We can get displacement from acceleration-time graph.
Statement 2: We can get acceleration from velocity-time graph.

Then
(1) Both statements are true
(2) Both statements are false
(3) Statement 1 is true and statement 2 is false
(4) Statement 1 is false and statement 2 is true

Answer (4)

Sol. To get displacement from acceleration-time graph, we will need 1 initial value (for velocity).

Also, $a=\frac{d v}{d t}$
\Rightarrow Slope will give a.
11. A projectile launched on a horizontal surface follows a trajectory given by $y=x-\frac{x^{2}}{20}$ where y-axis is in vertical upward direction. Maximum height attained by projectile is (All units are in SI)
(1) 10 m
(2) 5 m
(3) 20 m
(4) 40 m

Answer (2)
Sol. $y=x-\frac{x^{2}}{20}$
at maximum height $\frac{d y}{d x}=0$
$\Rightarrow x=10 \mathrm{~m}$
at $x=10 \mathrm{~m}, y=10-5=5 \mathrm{~m}$
12. An antenna of length /emits radiation of wavelength
λ. The power emitted by the antenna is proportional to:
(1) $\left(\frac{I}{\lambda}\right)^{2}$
(2) $\frac{l}{\lambda}$
(3) $\frac{\lambda}{l}$
(4) $\frac{1}{1 \lambda}$

Answer (1)

Sol. Since $P \propto\left(\frac{l}{\lambda}\right)^{2}$
\Rightarrow Option (1) is correct.
13. In a radioactive process, after 3 days, $\frac{1}{8}$ th of the initial amount of the element is undecayed. If in 5 days further, $8 \times 10^{-3} \mathrm{~kg}$ of the element decayed, find the original amount of element.
(1) 128 grams
(2) 64 grams
(3) 256 grams
(4) 32 grams

Answer (2)
Sol. $\frac{1}{8}=\frac{1}{2^{3}}$
$\Rightarrow 3$ half lives $=3$ days
$\Rightarrow \frac{\mathrm{b}}{2}=1$ day
Let m : initial mass
$\Rightarrow \frac{m}{8}-\frac{m}{8 \times 32}=8 \mathrm{grams}$
$\Rightarrow m=\frac{64 \times 32}{32-1} \simeq 65 \mathrm{gm}$
14. Find the change in energy stored in a capacitor of 600 pF capacitance charged at 50 V , once connected with another 600 pF uncharged capacitor.
(1) $0.56 \mu \mathrm{~J}$
(2) $0.4 \mu \mathrm{~J}$
(3) $0.86 \mu \mathrm{~J}$
(4) $0.32 \mu \mathrm{~J}$

Answer (1)
Sol. $U_{i}=\frac{1}{2} C v^{2}, U_{f}=\frac{1}{2} C\left(\frac{v}{2}\right)^{2}$
$\Delta U=\frac{3}{8} C v^{2}$
$=\frac{3}{8} \times 600 \times 10^{-12} \times(50)^{2}$
15. Phasor of a particle performing SHM is as shown in the diagram. The SHM has angular frequency ω and at $t=0$ the phasor lies along $O P$. At any time t further the projection of phasor along y-axis is given by

(1) $R \sin \left(\omega t+\frac{\pi}{6}\right)$
(2) $R \cos \left(\omega t+\frac{\pi}{6}\right)$
(3) $R \sin \left(\omega t-\frac{\pi}{6}\right)$
(4) $R \cos \left(\omega t-\frac{\pi}{6}\right)$

Answer (1)
Sol. θ at any time t

$$
\begin{aligned}
& =\omega t=30^{\circ} \\
& \Rightarrow \quad y_{\text {projection }}=R \sin \theta \\
& \quad=R \sin \left(\omega t+\frac{\pi}{6}\right)
\end{aligned}
$$

16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A body of mass 5 kg has the linear momentum of $100 \mathrm{~kg} \mathrm{~ms}^{-1}$ and acted upon by the force of 2 N in the direction of initial momentum for 2 seconds, then change in kinetic energy in Joule is

Answer (81.60)

Sol. $F \times t=\Delta P$

$$
\begin{aligned}
& \Rightarrow \quad 2 \times 2=P_{f}-100 \\
& \\
& P_{f}=104 \mathrm{~kg} \mathrm{~ms}^{-1} \\
& \Delta K=\frac{P_{f}^{2}}{2 m}-\frac{P_{i}^{2}}{2 m}=\frac{1}{2 \times 5} \times\left(104^{2}-100^{2}\right) \\
& \quad=\frac{1}{10} \times 4 \times 204=81.6 \mathrm{~J}
\end{aligned}
$$

22. In a YDSE experiment, fringe width is 2 mm when wavelength of light used is $\lambda=400 \mathrm{~nm}$. Find the fringe width (in mm) when wavelength is 600 nm .

Answer (3)

Sol. $\beta=\frac{\lambda D}{d}$
$\Rightarrow \frac{\beta^{\prime}}{\beta}=\frac{600}{400}=1.5$
$\Rightarrow \beta^{\prime}=3 \mathrm{~mm}$
23. A block moving with speed $1 \mathrm{~m} / \mathrm{s}$ comes to rest after moving for 20 cm over a rough surface. The coefficient of friction between the block and surface is \qquad

Answer (00.25)

Sol. $\because \quad v^{2}-u^{2}=2 a S$
$0^{2}-1^{2}=2(-\mu g) \frac{20}{100}$
$\mu=\frac{1}{4}=0.25$
24. The ratio of magnetic field due to coil at centre and at a distance of R from the centre on the axis passing through the centre and perpendicular to the plane of ring is $\sqrt{x}: 1$ (R is the radius of coil), find the value of x.
Answer (8)

Sol.

$$
B_{C}=\left(\frac{\mu_{0} i}{2 R}\right)
$$

$$
B_{P}=\frac{\mu_{0}}{4 \pi} \times \frac{2 \times i \times \pi R^{2}}{\left(R^{2}+R^{2}\right)^{3 / 2}}
$$

$$
=\frac{\mu_{0}}{2 R} \frac{i}{2 \sqrt{2}}=\left(\frac{\mu_{0} i}{4 \sqrt{2} R}\right)
$$

$$
\frac{B_{C}}{B_{P}}=\frac{4 \sqrt{2}}{2}=\sqrt{8}: 1
$$

25. In the given diagram image forms at a distance of 15 cm inside the

medium of refractive index 1.5 . Find the object distance (in cm) from point P.

Answer (12.00)

Sol. $\frac{1.5}{15}-\frac{1}{u}=\left(\frac{1.5-1}{30}\right)=\frac{0.5}{30}=\frac{1}{60}$
$\frac{1}{10}-\frac{1}{u}=\frac{1}{60} \Rightarrow \frac{1}{10}-\frac{1}{60}=\frac{1}{u}$
$\frac{1}{u}=\frac{5}{60} \Rightarrow u=\frac{60}{5}=12 \mathrm{~cm}$
26. Ratio of wavelengths of photons corresponding to first and second line of Balmer series in an emission spectrum is given by $\frac{x}{20}$ for a hydrogen like species. Value of x is equal to

Answer (27)
Sol. $\frac{1}{\lambda_{1}}=-R\left(\frac{1}{9}-\frac{1}{4}\right)$
$\frac{1}{\lambda_{2}}=-R\left(\frac{1}{16}-\frac{1}{4}\right)$
$\Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\frac{36}{5} \times \frac{3}{16}=\frac{27}{20}$
$\Rightarrow x=27$
27.
28.
29.
30.

