

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers & Solutions

Time : 3 hrs.

for

M.M.: 300

JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. The effective resistance in the following circuit across terminal *A* and *B* is equal to

Answer (1)

Sol. Equivalent circuit

$$\Rightarrow R = 5 \Omega$$

2. If the emf generated in the moving rod in uniform magnetic field *B* is 0.08 V, then find the speed (*v*) of the rod.

Answer (2)

Sol. $\varepsilon = Blv$

$$v = \frac{\varepsilon}{Bl} = \frac{0.08 \times 100}{0.4 \times 10} = 2 \text{ m/s}$$

3. Which of the following expressions give the value of acceleration due to gravity (*g*') at the altitude *h* above the surface of earth. (*R*: radius of earth, *g*: acceleration due to gravity at surface of earth)

(1)
$$g' = g \frac{h^2}{R^2}$$
 (2) $g' = \frac{gR^2}{(R+h)^2}$
(3) $g' = g\left(1 - \frac{h}{R}\right)$ (4) $g' = g\left(1 - \frac{h^2}{R^2}\right)$

Answer (2)

Sol.
$$g' = \frac{GM_e}{(R+h)^2}$$

 $g' = \frac{gR^2}{(R+h)^2}$

- 4. Find the distance from a point charge of magnitude 5×10^{-9} C, where the electric potential is 50 V
 - (1) 90 cm (2) 70 cm (3) 60 cm (4) 50 cm
- Answer (1)

Sol.
$$V = \frac{kQ}{kQ}$$

$$50 = \frac{9 \times 10^9 \times 5 \times 10^{-9}}{r}$$

r = 0.9 m

5. Match column I with column II and choose the correct option.

	Column I		Column II
1.	Torque	a.	M ⁰ LT ⁻²
Π.	Stress	b.	ML-1T-1
III.	Coefficient of viscosity	C.	ML ⁻¹ T ⁻²
IV.	Gravitational potential gradient	d.	ML ² T ⁻²

(1) $I \rightarrow a, II \rightarrow c, III \rightarrow b, IV \rightarrow d$

(2) $I \rightarrow d$, $II \rightarrow b$, $III \rightarrow c$, $IV \rightarrow a$

(3) $I \rightarrow d, II \rightarrow c, III \rightarrow b, IV \rightarrow a$

(4)
$$I \rightarrow a, II \rightarrow c, III \rightarrow d, IV \rightarrow b$$

Answer (3)

Sol. Torque = $r \times F = ML^2T^{-2}$

Stress =
$$\frac{F}{A} = ML^{-1}T^{-2}$$

Coefficient of viscosity = $ML^{-1}T^{-1}$ Gravitational potential gradient = $M^{0}LT^{-2}$

JE	E (Main)-2023 : Phase-2	(08-	04-20	023)-Eve	ning		
6.	Which of the following	g is	the	highest	energy	10.	Consider 2 stateme
	electromagnetic wave?						Statement 1: We
	(1) X-rays	• •		Red			acceleration-time gr
	(3) Microwaves	(4)	Rad	iowave			Statement 2: We
Answer (1)						velocity-time graph.	
501.	Since out of the given options, X-rays have the highest frequency.						Then
\Rightarrow	Option (1) is correct						(1) Both statements
<i>-</i> 7.	A carnot engine working between 27°C and 127° performs 2 kJ of work. The amount of heat energy						(2) Both statements
							(3) Statement 1 is t
	rejected is equal to						(4) Statement 1 is f
	(1) 4 kJ	• •	6 kJ			Ans	wer (4)
	(3) 8 kJ	(4)	12 k	J		Sol.	To get displacemen
	wer (2)						we will need 1 initial
Sol.	$2 \text{ kJ} = x \left(1 - \frac{300}{400} \right)$						Also, $a = \frac{dv}{dt}$
	$2 \text{ kJ} = \frac{x}{4}$						\Rightarrow Slope will give a
	·					11.	A projectile launcl
	\Rightarrow x = 8 kJ				\sim		follows a trajectory
0	\Rightarrow Heat lost = 6 kJ						
8.	Statement-I: Electromagnet are made of soft iron. Statement-II: Soft iron has lower permeability and						y-axis is in vertica
	high retentivity.	185 10	ower	permear	onity and		height attained by p
	Choose the correct optio	n rel	ated	to staten	nents.		(1) 10 m
	(1) Statement-I is true a	nd s	tatem	nent-II is	true		(3) 20 m
	(2) Statement-I is true a	nd s	tatem	nent-II is	false	Ans	wer (2)
	(3) Statement-I is false a	and s	stater	ment-II is	true	Sol.	$y = x - \frac{x^2}{20}$
	(4) Statement-I is false a	and s	stater	ment-II is	false	$\langle \uparrow \rangle$	20
Ans	wer (2)			$\langle \cdot \rangle$			at maximum height
Sol.	Soft iron has low retentiv	•		• •	•		at maximum norgin
9.	If a satellite is orbiting the earth at a height h (from						\Rightarrow x = 10 m
	the centre of earth) has angular momentum 'L'. Then, the same satellite at a height 10 times ' h ' will have angular momentum equal to					at x = 10 m, y = 10 -	
					12.	An antenna of length	
	(1) $\sqrt{10} L$	(2)	$\sqrt{5}L$	-			λ . The power emitte
						1	to:

(4) $\sqrt{20} L$

(3) 3L Answer (1)

Sol. ::
$$\frac{mv^2}{r} = \frac{GMm}{r^2}$$

 $\Rightarrow m^2v^2r^2 = GMmr$
 $L^2 \propto r$
 $\therefore \frac{L_1}{L_2} = \sqrt{\frac{h}{10h}}$

$$\Rightarrow L_2 = \sqrt{10}L$$

ents:

e can get displacement from raph.

e can get acceleration from

- ts are true
- ts are false
- true and statement 2 is false
- false and statement 2 is true
- nt from acceleration-time graph, al value (for velocity).

hed on a horizontal surface ry given by $y = x - \frac{x^2}{20}$ where

al upward direction. Maximum projectile is (All units are in SI)

(1)	10 m	(2)	5 m

(4) 40 m

 $\frac{dy}{dx} = 0$

-5 = 5 m

th / emits radiation of wavelength ed by the antenna is proportional to:

(1)
$$\left(\frac{l}{\lambda}\right)^2$$
 (2) $\frac{l}{\lambda}$

(3)
$$\frac{\lambda}{l}$$
 (4) $\frac{1}{l\lambda}$

Answer (1)

Sol. Since
$$P \propto \left(\frac{l}{\lambda}\right)^2$$

 \Rightarrow Option (1) is correct.

13. In a radioactive process, after 3 days, $\frac{1}{8}$ th of the

initial amount of the element is undecayed. If in 5 days further, 8×10^{-3} kg of the element decayed, find the original amount of element.

- (1) 128 grams (2) 64 grams
- (3) 256 grams
- (4) 32 grams

Answer (2)

Sol. $\frac{1}{8} = \frac{1}{2^3}$

 \Rightarrow 3 half lives = 3 days

$$\Rightarrow \frac{b}{2} = 1 \text{ day}$$

Let m: initial mass

$$\Rightarrow \frac{m}{8} - \frac{m}{8 \times 32} = 8 \text{ grams}$$
$$\Rightarrow m = \frac{64 \times 32}{23 - 1} \approx 65 gm$$

14. Find the change in energy stored in a capacitor of $600 \ pF$ capacitance charged at $50 \ V$, once connected with another $600 \ pF$ uncharged capacitor.

(1)	0.56 μJ	(2)	0.4 μJ
(3)	0.86 μJ	(4)	0.32 μJ

Answer (1)

Sol.
$$U_i = \frac{1}{2}Cv^2$$
, $U_f = \frac{1}{2}C\left(\frac{v}{2}\right)^2$
$$\Delta U = \frac{3}{8}Cv^2$$
$$= \frac{3}{8} \times 600 \times 10^{-12} \times (50)^2$$

15. Phasor of a particle performing SHM is as shown in the diagram. The SHM has angular frequency ω and at *t* = 0 the phasor lies along *OP*. At any time *t* further the projection of phasor along *y*-axis is given by

(1)
$$R\sin\left(\omega t + \frac{\pi}{6}\right)$$
 (2) $R\cos\left(\omega t + \frac{\pi}{6}\right)$
(3) $R\sin\left(\omega t - \frac{\pi}{6}\right)$ (4) $R\cos\left(\omega t - \frac{\pi}{6}\right)$

Answer (1)

Sol. θ at any time *t*

. 1 200

$$\Rightarrow y_{\text{projection}} = R \sin \theta$$
$$= R \sin \left(\omega t + \frac{\pi}{6} \right)$$

16.

17. 18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A body of mass 5 kg has the linear momentum of 100 kg ms⁻¹ and acted upon by the force of 2 N in the direction of initial momentum for 2 seconds, then change in kinetic energy in Joule is

Answer (81.60)

- **Sol.** $F \times t = \Delta P$
 - $\Rightarrow 2 \times 2 = P_f 100$

 $P_f = 104 \text{ kg ms}^{-1}$

$$\Delta K = \frac{P_f^2}{2m} - \frac{P_i^2}{2m} = \frac{1}{2 \times 5} \times \left(104^2 - 100^2\right)$$
$$= \frac{1}{10} \times 4 \times 204 = 81.6 \text{ J}$$

22. In a YDSE experiment, fringe width is 2 mm when wavelength of light used is
$$\lambda = 400$$
 nm. Find the fringe width (in mm) when wavelength is 600 nm.

Answer (3)

JEE (Main)-2023 : Phase-2 (08-04-2023)-Evening

JEE (Main)-2023 : Phase-2 (08-04-2023)-Evening

Sol. $\beta = \frac{\lambda D}{d}$ $\Rightarrow \frac{\beta'}{\beta} = \frac{600}{400} = 1.5$

 $\Rightarrow \beta' = 3 \text{ mm}$

 A block moving with speed 1 m/s comes to rest after moving for 20 cm over a rough surface. The coefficient of friction between the block and surface is____

Answer (00.25)

Sol. :: $v^2 - u^2 = 2aS$

$$0^{2} - 1^{2} = 2(-\mu g) \frac{20}{100}$$
$$\mu = \frac{1}{4} = 0.25$$

24. The ratio of magnetic field due to coil at centre and at a distance of *R* from the centre on the axis passing through the centre and perpendicular to the plane of ring is \sqrt{x} : 1 (*R* is the radius of coil), find the value of *x*.

Answer (8)

25. In the given diagram image forms at a distance of 15 cm inside the

medium of refractive index 1.5. Find the object distance (in cm) from point *P*.

Answer (12.00)

Sol.
$$\frac{1.5}{15} - \frac{1}{u} = \left(\frac{1.5 - 1}{30}\right) = \frac{0.5}{30} = \frac{1}{60}$$

 $\frac{1}{10} - \frac{1}{u} = \frac{1}{60} \Rightarrow \frac{1}{10} - \frac{1}{60} = \frac{1}{u}$
 $\frac{1}{u} = \frac{5}{60} \Rightarrow u = \frac{60}{5} = 12 \text{ cm}$

26. Ratio of wavelengths of photons corresponding to first and second line of Balmer series in an emission spectrum is given by $\frac{x}{20}$ for a hydrogen like species. Value of *x* is equal to

Answer (27)

Sol.
$$\frac{1}{\lambda_1} = -R\left(\frac{1}{9} - \frac{1}{4}\right)$$
$$\frac{1}{\lambda_2} = -R\left(\frac{1}{16} - \frac{1}{4}\right)$$
$$\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{36}{5} \times \frac{3}{16} = \frac{27}{20}$$
$$\Rightarrow x = 27$$
$$27.$$
$$28.$$
$$29.$$
$$30.$$