Basic Mathematics (241)

Marking Scheme

2023-24
Section A

1) (b) $x y^{2}$
2) (c) 20 1
3) (b) $1 / 2$ 1
4) (d) No Solution 1
5) (d) 0,8 1
6) (c) 5 Unit 1
7) (a) $\triangle P Q R \sim \triangle C A B$ 1
8) (d) RHS 1
9) (b) 70° 1
10) (b) $3 / 4$ 1
11) (b) 45° 1
12) (a) $\sin ^{2} A$ 1
13) (c) $\pi: 2$ 1
14) (a) 7 cm 1
15) (d) $\frac{1}{6}$ 1
16) (a) 15 1
17) (a) 3.5 CM 1
18) (b) 12-18 1
19) (a) Both assertion and reason are true and reason is the correct explanation of assertion. 1
20) (d) Assertion (A) is false but reason(R) is true.1

SECTION B

21) $3 x+2 y=8$
$6 x-4 y=9$
$a_{1}=3, \quad b_{1}=2, \quad c_{1}=8$
$a_{2}=6, \quad b_{2}=-4, \quad c_{2}=9$
$\frac{a_{1}}{a_{2}}=\frac{3}{6}=\frac{1}{2} \quad \frac{b_{1}}{b_{2}}=\frac{2}{-4}=\frac{-1}{2} \quad \frac{c_{1}}{c_{2}}=\frac{8}{9}$
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
The given pair of linear equations are consistent.
22) Given:-AB II CD II EF

To prove: $-\frac{A E}{E D}=\frac{B F}{F C}$
Construction:- Join BD to
intersect EF at G.
Proof:- in $\triangle \mathrm{ABD}$

EG II AB (EF II AB)
$\frac{A E}{E D}=\frac{B G}{G D} \quad$ (by BPT) \qquad (1)

In $\triangle D B C$
GF IICD (EF IICD)
$\frac{B F}{F C}=\frac{B G}{G D} \quad$ (by BPT)
(2)
from (1) \& (2)
$\frac{A E}{E D}=\frac{B F}{F C}$

OR

Given $A D=6 \mathrm{~cm}, \mathrm{DB}=9 \mathrm{~cm}$
$A E=8 \mathrm{~cm}, E C=12 \mathrm{~cm}, \angle A D E=48$
To find:- $\angle A B C=$?
Proof:
In $\triangle A B C$
$\frac{A D}{D B}=\frac{6}{9}=\frac{2}{3}$

$\frac{A E}{E C}=\frac{8}{12}=\frac{2}{3}$
From (1) \& (2)
$\frac{A D}{D B}=\frac{A E}{E C}$
DE II BC (Converse of BPT)
$\angle A D E=\angle A B C$ (Corresponding angles)
$\Rightarrow \angle A B C=48^{\circ}$
23) In $\triangle \mathrm{OTA}, \angle \mathrm{OTA}=90^{\circ}$

By Pythagoras theorem
$O A^{2}=O T^{2}+A T^{2}$
$(5)^{2}=O T^{2}+(4)^{2}$
$25-16=O T^{2}$

$9=\mathrm{OT}^{2}$
$\mathrm{OT}=3 \mathrm{~cm}$
radius of circle $=3 \mathrm{~cm}$.
24) $\sin ^{2} 60^{\circ}+2 \tan 45^{\circ}-\cos ^{2} 30^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)^{2}+2(1)-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=\frac{3}{4}+2-\frac{3}{4}$
$=2$
25) Area of the circle= sum of areas of 2 circles
$\pi R^{2}=\pi(40)^{2}+\pi(9)^{2}$
$\pi R^{2}=\pi \times\left(40^{2}+9^{2}\right)$
$R^{2}=1600+81$
$R^{2}=1681$
$R=41 \mathrm{~cm}$.
Diameter of given circle $=41 \times 2=82 \mathrm{~cm}$

OR

radius of circle $=10 \mathrm{~cm}, \quad \theta=90^{\circ}$
Area of minor segment $=\frac{\theta}{360^{\circ}} \pi \mathrm{r}^{2}-$ Area of Δ
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}-\frac{1}{2} \times b \times h$
$=\frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10-\frac{1}{2} \times 10 \times 10$
$=\frac{314}{4}-50$
$=78.5-50=28.5 \mathrm{~cm}^{2}$
Area of minor segment $=28.5 \mathrm{~cm}^{2}$

Section C

26) Let us assume that $\sqrt{3}$ be a rational number
$\sqrt{3}=\frac{a}{b} \quad$ where a and b are co-prime.
squaring both the sides
$(\sqrt{3})^{2}=\left(\frac{a}{b}\right)^{2}$
$3=\frac{a^{2}}{b^{2}} \Rightarrow a^{2}=3 b^{2}$
a^{2} is divisible by 3 so a is also divisible by 3 \qquad (1)
let $a=3 c$ for any integer c.
$(3 c)^{2}=3 \mathrm{~b}^{2}$
$9 c^{2}=3 b^{2}$
$b^{2}=3 c^{2}$
since b^{2} is divisible by 3 so, b is also divisible by 3 \qquad (2)

From (1) \& (2) we can say that 3 in a factor of a and b
which is contradicting the fact that a and b are co- prime.
Thus, our assumption that $\sqrt{3}$ is a rational number is wrong.
Hence, $\sqrt{3}$ is an irrational number.
27) $P(S)=4 S^{2}-4 S+1$
$4 S^{2}-2 S-2 S+1=0$
$2 S(2 S-1)-1(2 S-1)=0$
$(2 S-1)(2 S-1)=0$
$S=1 / 2 \quad S=1 / 2$
$a=4 \quad b=-4 \quad c=1 \quad \alpha=1 / 2 \beta=1 / 2$
$\alpha+\beta=\frac{-b}{a}$
LHS $=\alpha+\beta=\frac{1}{2}+\frac{1}{2}=1$, RHS $=\frac{-b}{a}=\frac{-(-4)}{4}=1$, hence proved
$\alpha \beta=\frac{c}{a}$
LHS $=\alpha \beta=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$, RHS $=\frac{c}{a}=\frac{1}{4}, \quad$ hence proved
28) Let cost of one bat be Rs x

Let cost of one ball be Rs y
ATQ
$4 x+1 y=2050$
$3 x+2 y=1600$
from (1) $4 x+1 y=2050$
$y=2050-4 x$
$3 x+2(2050-4 x)=1600$

$$
\begin{align*}
3 \mathrm{x}+4100-8 \mathrm{x} & =1600 \\
-5 \mathrm{x} & =-2500 \\
x & =500
\end{align*}
$$

Substiture value of x in (1)

$$
\begin{align*}
& 4 x+1 y=2050 \\
& 4(500)+y=2050 \\
& 2000+y=2050 \\
& y=50
\end{align*}
$$

Hence
Cost of one bat = Rs. 500
Cost of one ball $=$ Rs. 50

OR

Let the fixed charge for first 3 days $=$ Rs. x
And additional charge after 3 days=Rs. y
ATQ
$x+4 y=27$
$x+2 y=21$
Subtract eq ${ }^{\text {n }}$ (2) from (1)
$2 y=6$
$y=3$
Substitute value of y in (2)
$x+2(3)=21$
$x=21-6$
$x=15$
Fixed charge= Rs. 15
Additional charge per day = Rs. 3
29) Given circle touching sides of $A B C D$ at P, Q, R and S

To prove- $A B+C D=A D+B C$
Proof-
$A P=A S------(1) \quad$ tangents from an external point
$P B=B Q-----(2) \quad$ to a circle are equal in length
DR=DS-------(3)

CR=CQ-------(4)
Adding eq ${ }^{\mathrm{n}}$ (1),(2),(3) \& (4)
$A P+B P+D R+C R=A S+D S+B Q+C Q$
$A B+D C=A D+B C$
30) $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

LHS $=(\operatorname{cosec} \theta-\cot \theta)^{2}$
$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$

BYJU'S
The Learning App
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}$
$=\frac{1-\cos \theta}{1-\cos \theta}=\mathrm{RHS}$

LHS $=$ RHS, Hence Proved

OR

$\sec A(1-\sin A)(\sec A+\tan A)=1$
LHS $=\frac{1}{\cos A}(1-\sin A)\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)$
$=\frac{(1-\sin \mathrm{A})}{\cos A} \frac{(1+\sin \mathrm{A})}{\cos A}$
$=\frac{(1-\sin \mathrm{A})(1+\sin \mathrm{A})}{\cos ^{2} A}$
$=\frac{1-\sin ^{2} \mathrm{~A}}{\cos ^{2} A} \quad\left(1-\sin ^{2} A=\cos ^{2} A\right)$
$=\frac{\cos ^{2} A}{\cos ^{2} A}$
= $1=\mathrm{RHS}$
LHS=RHS. Hence Proved
31) (i) Red balls $=6$, Black balls $=4$, White balls $=x$
$\mathrm{P}($ white ball $)=\frac{x}{10+x}=\frac{1}{3}$
$\Rightarrow 3 x=10+x \Rightarrow x=5$ white balls
(ii) Let y red balls be removed, black balls $=4$, white balls $=5$
$\mathrm{P}($ white balls $)=\frac{5}{(6-y)+4+5}=\frac{1}{2}$
$\Rightarrow \frac{5}{15-y}=\frac{1}{2} \Rightarrow 10=15-y \Rightarrow y=5$
So 5 balls should be removed.

Section D

32) Let the speed of train be $x \mathrm{~km} / \mathrm{hr}$
distance $=360 \mathrm{~km}$
Speed $=\frac{\text { distance }}{\text { time }}$
Time $=\frac{360}{x}$
New speed $=(x+5) \mathrm{km} / \mathrm{hr}$
Time $=\frac{D}{5}$

$$
x+5=\frac{360}{\left(\frac{360}{x}-1\right)}
$$

$(x+5)\left(\frac{360}{x}-1\right)=360$
$(x+5)(360-x)=360 x$
$-x^{2}-5 x+1800=0$
$x^{2}+5 x-1800=0$
$x^{2}+45 x-40 x-1800=0$
$x(x+45)-40(x+45)=0$
$(x+45)(x-40)=0$
$x+45=0 \quad, \quad x-40=0$
$x=-45 \quad, \quad x=40$
Speed cannot be negative
Speed of train $=40 \mathrm{~km} / \mathrm{hr}$

OR

Let the speed of the stream $=x k m / h r$
Speed of boat= $18 \mathrm{~km} / \mathrm{hr}$
Upstream speed $=(18-x) \mathrm{km} / \mathrm{hr}$
Downstream speed $=(18+x) \mathrm{km} / \mathrm{hr}$
Time taken (upstream) $=\frac{24}{(18-x)}$
Time taken (downstream) $=\frac{24}{(18+\mathrm{x})}$
ATQ

$$
\begin{aligned}
& \frac{24}{(18-x)}=\frac{24}{(18+x)}+1 \\
& \frac{24}{(18-x)}-\frac{24}{(18+x)}=1 \\
& 24(18+x)-24(18-x)=(18-x)(18+x) \\
& 24(18+x-18+x)=(18)^{2}-x^{2} \\
& 24(2 x)=324-x^{2} \\
& 48 x-324+x^{2}=0 \\
& x^{2}+48 x-324=0 \\
& x^{2}-6 x+54 x-324=0 \\
& x(x-6)+54(x-6)=0 \\
& (x-6)(x+54)=0 \\
& x-6=0, \quad x+54=0 \\
& x=6 \quad, \quad x=-54
\end{aligned}
$$

Speed cannot be negative
Speed of stream $=6 \mathrm{~km} / \mathrm{hr}$
33) Given $\triangle A B C, D E| | B C$

To prove $\frac{A D}{D B}=\frac{A E}{E C}$
Construction: join BE and CD
Draw $D M \perp A C$ and $E N \perp A B$
Proof: Area of $\triangle A D E=\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$
$=\frac{1}{2} \times A D \times E N-$
Area $(\triangle D B E)=\frac{1}{2} \times D B \times E N$
Divide eq ${ }^{\mathrm{n}}(1)$ by (2)
$\frac{\operatorname{ar} \triangle A D E}{\operatorname{ar} \triangle D B E}=\frac{\frac{1}{2} \mathrm{X} A D \mathrm{X} E N}{\frac{1}{2} \mathrm{X} D B \times E N}=\frac{A D}{D B}$
area $\triangle A D E=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DM}$
area $\triangle D E C=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DM}$
Divide eq ${ }^{n}$ (4) by (5)
$\frac{\operatorname{ar} \triangle A D E}{\operatorname{ar} \triangle D E C}=\frac{\frac{1}{2} \mathrm{X} A E \times D M}{\frac{1}{2} \mathrm{X} E C \times D M}=\frac{A E}{E C}$
$\triangle B D E$ and $\triangle D E C$ are on the same base $D E$ and between same parallel lines $B C$ and $D E$
$\therefore \operatorname{area}(\triangle D B E)=\operatorname{ar}(D E C)$
hence
$\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle D B E}=\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle D E C)} \quad[$ LHS of (3) $=$ RHS of (6)]
$\frac{A D}{D B}=\frac{A E}{E C} \quad[\mathrm{RHS}$ of $(3)=\mathrm{RHS}$ of (6)
Since $\frac{P S}{S Q}=\frac{P T}{T R} \therefore S T \| Q R$ (by converse of $B P T$)
$\angle P S T=\angle P Q R \quad$ (Corresponding angles)
But $\angle \mathrm{PST}=\angle \mathrm{PRQ}$ (given)
$\angle P Q R=\angle P R Q$
$P R=P Q$ (sides opposite to equal angles are equal

Hence $\triangle P Q R$ is isosceles.
34) Diameter of cylinder and hemisphere $=5 \mathrm{~mm}$ radius, $(r)=\frac{5}{2}$

Total length $=14 \mathrm{~mm}$
Height of cylinder $=14-5=9 \mathrm{~mm}$
CSA of cylinder $=2$ ネ r h
$=2 \times \frac{22}{7} \times \frac{5}{2} \times 9$
$=\frac{990}{7} \mathrm{~mm}^{2}$
CSA of hemispheres $=2 \pi r^{2}$
$=2 \times \frac{22}{7} \times\left(\frac{5}{2}\right)^{2}$
$=\frac{275}{7} \mathrm{~mm}^{2}$
CSA of 2 hemispheres $=2 \times \frac{275}{7}$
$=\frac{550}{7} \mathrm{~mm}^{2}$
Total area of capsule $=\frac{990}{7}+\frac{550}{7}$
$=\frac{1540}{7}$
$=220 \mathrm{~mm}^{2}$

Diameter of cylinder $=2.8 \mathrm{~cm}$
radius of cylinder $=\frac{2.8}{2}=1.4 \mathrm{~cm}$
radius of cylinder $=$ radius of hemisphere $=1.4 \mathrm{~cm}$

Height of cylinder $=5-2.8$
$=2.2 \mathrm{~cm}$
Volume of 1 Gulab jamun = vol. of cylinder $+2 x$ vol. of hemisphere
$=\bar{\wedge} r^{2} \mathrm{~h}+2 \times \frac{2}{3} \pi r^{3}$
$\frac{22}{7} \times(1.4)^{2} \times 2.2+2 \times \frac{2}{3} \times \frac{22}{7} \times(1.4)^{3}$
$=13.55+11.50$
$=25.05 \mathrm{~cm}^{3}$
volume of 45 Gulab jamun $=45 \times 25.05$
syrup in 45 Gulab jamun $=30 \% \times 45 \times 25.05$

$$
\begin{gathered}
=\frac{30}{100} \times 45 \times 25.05 \\
=338.175 \mathrm{~cm}^{3} \\
\approx 338 \mathrm{~cm}^{3}
\end{gathered}
$$

35)

Life time (in hours)	Number of lamps(f)	Mid x	d	fd
$1500-2000$	14	1750	-1500	-21000
$2000-2500$	56	2250	-1000	-56000
$2500-3000$	60	2750	-500	-30000
$3000-3500$	74	3750	500	37000
$3500-4000$	62	4250	1000	62000
$4000-4500$	48	4750	1500	72000
$4500-5000$	400			64000

Mean $=\mathrm{a}+\frac{\Sigma f d}{\Sigma \mathrm{f}}$

$$
a=3250
$$

Mean $=3250+\frac{64000}{400}$

$$
\begin{aligned}
& =3250+160 \\
& =3410
\end{aligned}
$$

Average life of lamp is 3410 hr

Section E

36) $\mathrm{a}_{6}=16000 \quad \mathrm{a}_{9}=22600$
$a+5 d=16000------(1)$
$a+8 d=22600$
substitute $a=1600-5 d$ from (1)
$16000-5 d+8 d=22600$
$3 \mathrm{~d}=22600-16000$
$3 \mathrm{~d}=6600$
$\mathrm{d}=\frac{6600}{3}=2200$
$\mathrm{a}=16000-5(2200)$
$a=16000-11000$
$a=5000$
(i) $a_{n}=29200, a=5000, \quad d=2200$
$a_{n}=a+(n-1) d$
$29200=5000+(n-1) 2200$
$29200-5000=2200 \mathrm{n}-2200$
$24200+2200=2200 n$
$26400=2200 n$
$\mathrm{n}=\frac{264}{22}$
n=12
in $12^{\text {th }}$ year the production was Rs 29200
(ii) $n=8, \quad a=5000, \quad d=2200$
$a_{n}=a+(n-1) d \quad 1 / 2$
$=5000+(8-1) 2200 \quad 1 / 2$
$=5000+7 \times 2200$
= 5000+15400
= 20400
The production during $8^{\text {th }}$ year is $=20400$

OR

$\mathrm{n}=3, \quad \mathrm{a}=5000, \quad \mathrm{~d}=2200$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$=\frac{3}{2}[2(5000)+(3-1) 2200]$
$S_{3}=\frac{3}{2}(10000+2 \times 2200)$

BYJU'S
The Learning App
$=\frac{3}{2}(10000+4400) \quad 1 / 2$
$=3 \times 7200$
$=21600$
The production during first 3 year is 21600
(iii) $\mathrm{a}_{4}=\mathrm{a}+3 \mathrm{~d}$
$=5000+3$ (2200)
$=5000+6600$
$=11600$
$a_{7}=a+6 d$
$=5000+6 \times 2200$
$=5000+13200$
$=18200$
$\mathrm{a}_{7}-\mathrm{a}_{4}=18200-11600=6600$
37) coordinates of $A(2,3)$ Alia's house
coordinates of $B(2,1)$ Shagun's house
coordinates of $C(4,1) \quad$ Library
(i) $\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
=\sqrt{(2-2)^{2}+(1-3)^{2}}
$$

$$
=\sqrt{\left(0^{2}+(-2)^{2}\right.}
$$

$$
A B=\sqrt{0+4}=\sqrt{4}=2 \text { units }
$$

Alia's house from shagun's house is 2 units
(ii) $\mathrm{C}(4,1), \mathrm{B}(2,1)$
$\mathrm{CB}=\sqrt{(2-4)^{2}+(1-1)^{2}}$
$=\sqrt{(-2)^{2}+0^{2}}$
$=\sqrt{4+0}=\sqrt{4}=2$ unit
(iii) $0(0,0), B(2,1)$
$\mathrm{OB}=\sqrt{(2-0)^{2}+(1-0)^{2}}$

$$
=\sqrt{2^{2}+1^{2}}=\sqrt{4+1}=\sqrt{5} \text { units }
$$

Distance between Alia's house and Shagun's house, $\mathrm{AB}=2$ units
Distance between Library and Shagun's house, $C B=2$ units
$O B$ is greater than $A B$ and $C B$,
For shagun, school $[\mathrm{O}]$ is farther than Alia's house $[A]$ and Library $[C]$
OR
$\mathrm{C}(4,1), \quad \mathrm{A}(2,3)$
$C A=\sqrt{(2-4)^{2}+(3-1)^{2}}$
$=\sqrt{(-2)^{2}+2^{2}}+\quad=\sqrt{4+4} \quad=\sqrt{8}$
$=2 \sqrt{2}$ units $\quad A C^{2}=8$
Distance between Alia's house and Shagun's house, $\mathrm{AB}=2$ units
Distance between Library and Shagun's house, CB $=2$ units $\quad 1 / 2$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=2^{2}+2^{2}=4+4=8=\mathrm{AC}^{2}$
Therefore A, B and C form an isosceles right triangle.
38)
(i) $X Y \| P Q$ and $A P$ is transversal.
$\angle A P D=\angle P A X$ (alternative interior angles)

$$
\angle A P D=30^{\circ}
$$

(ii) $\angle Y A Q=30^{\circ}$

$$
\angle A Q D=30^{\circ}
$$

Because $X Y|\mid P Q$ and $A Q$ is a transversal so alternate interior angles are equal

$$
\angle Y A Q=\angle A Q D
$$

(iii) $\ln \triangle A D P$

$$
\begin{array}{lc}
\tan 45^{\circ}=\frac{100}{P D} & 1 / 2 \\
1=\frac{100}{P D} & 1 / 2 \\
P D=100 \mathrm{~m} &
\end{array}
$$

Boat P is 100 m from the light house

In $\triangle A D Q$
$\tan 30^{\circ}=\frac{100}{D Q}$
$\frac{1}{\sqrt{3}}=\frac{100}{D Q}$
$D Q=100 \sqrt{3} \mathrm{~m}$
Boat Q is $100 \sqrt{3} \mathrm{~m}$ from the light house

