

BYJU'S CBSE Class 10 Maths Basic Marking Scheme 2023-24

Basic Mathematics (241) Marking Scheme 2023-24			
Section A			
1) (b) xy^2			
2) (c) 20			
3) (b) ½			
4) (d) No Solution			
5) (d) 0,8			
6) (c) 5 Unit			
7) (a) $\Delta PQR \sim \Delta CAB$)		
8) (d) RHS	900		
9) (b) 70°	Det		
10) (b) ³ / ₄)		
11) (b) 45°			
12) (a) sin ² A			
13) $(c) \pi : 2$			
14) (a) 7 <i>cm</i>			
15) (d) $\frac{1}{6}$			
16) (a) 15			
17) (a) 3.5 CM			
18) (b) 12-18			
19) (a) Both assertion and reason are true and reason is the correct explanation	of assertion.		
20) (d) Assertion (A) is false but reason(R) is true.			

SECTION B

21) 3x+2y = 8

$$6x - 4y = 9$$

$$a_1$$
=3, b_1 =2, c_1 = 8

$$a_2$$
=6, b_2 =-4, c_2 = 9

1

$$\frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2}$$
 $\frac{b_1}{b_2} = \frac{2}{-4} = \frac{-1}{2}$ $\frac{c_1}{c_2} = \frac{8}{9}$

$$\frac{b_1}{b_2} = \frac{2}{-4} = \frac{-1}{2}$$

$$\frac{c_1}{c_2} = \frac{c_2}{c_2}$$

1/2

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

The given pair of linear equations are consistent.

1/2

1/2

22) Given:-AB II CD II EF

To prove:-
$$\frac{AE}{ED} = \frac{BF}{FC}$$

Construction:- Join BD to

intersect EF at G.

Proof:- in ∆ ABD

EG II AB (EF II AB)

$$\frac{AE}{ED} = \frac{BG}{GD}$$
 (by BPT)_____(1

1/2

In ΔDBC

GFIICD (EFIICD)

$$\frac{BF}{FC} = \frac{BG}{GD}$$
 (by BPT)____(2)

1/2

from (1) & (2)

$$\frac{AE}{EE} = \frac{BF}{EE}$$

1/2

OR

AE=8cm, EC=12cm, ∠ADE=48

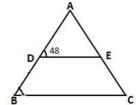
To find:- ∠ABC=?

Proof:

In ΔABC

$$\frac{AD}{DB} = \frac{6}{9} = \frac{2}{3}$$
(1)

$$\frac{AE}{EC} = \frac{8}{12} = \frac{2}{3}$$
(2)



$$\frac{AD}{DB} = \frac{AE}{EC}$$

DE II BC (Converse of BPT)

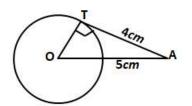
∠ADE=∠ABC (Corresponding angles)

⇒ ∠ABC=48°

1

1

23) In \triangle OTA, \angle OTA = 90°


By Pythagoras theorem

$$OA^2 = OT^2 + AT^2$$

$$(5)^2 = OT^2 + (4)^2$$

$$9 = OT^{2}$$

OT=3cm

1/2

1/2

radius of circle = 3cm. 1

24) $\sin^2 60^\circ + 2 \tan 45^\circ - \cos^2 30^\circ$

$$= \left(\frac{\sqrt{3}}{2}\right)^2 + 2(1) - \left(\frac{\sqrt{3}}{2}\right)^2$$

 $=\frac{3}{4} + 2 - \frac{3}{4}$

= 2

1

1

25) Area of the circle= sum of areas of 2 circles

$$\pi R^2 = \pi (40)^2 + \pi (9)^2$$

1/2

$$\pi R^2 = \pi x (40^2 + 9^2)$$

1/2

$$R^2 = 1600 + 81$$

 $R^2 = 1681$

 $R = 41 \ cm.$

1/2

Diameter of given circle = $41 \times 2 = 82cm$

1/2

OR

radius of circle = 10cm, $\theta = 90^{\circ}$

Area of minor segment = $\frac{\theta}{360^{\circ}}\pi r^2$ - Area of Δ

$$= \frac{\theta}{360^{\circ}} \times \pi r^2 - \frac{1}{2} \times b \times h$$

1/2

$$= \frac{90^{\circ}}{360^{\circ}} \times 3.14 \times 10 \times 10 - \frac{1}{2} \times 10 \times 10$$

1/2

$$= \frac{314}{4} - 50$$

$$= 78.5-50 = 28.5 \text{ cm}^2$$

1/2

Area of minor segment = 28.5 cm²

1/2

Section C

26) Let us assume that $\sqrt{3}$ be a rational number

$$\sqrt{3} = \frac{a}{b}$$
 where a and b are co-prime.

squaring both the sides

$$\left(\sqrt{3}\right)^2 = \left(\frac{a}{b}\right)^2$$

$$3=\frac{a^2}{b^2} \Rightarrow a^2=3b^2$$

 a^2 is divisible by 3 so a is also divisible by 3 _____(1)

let a=3c for any integer c.

$$(3c)^2 = 3b^2$$
 1/2

$$9c^2 = 3b^2$$

$$b^2 = 3c^2$$

since b^2 is divisible by 3 so, b is also divisible by 3 ____(2)

which is contradicting the fact that a and b are co-prime.

Thus, our assumption that $\sqrt{3}$ is a rational number is wrong.

Hence,
$$\sqrt{3}$$
 is an irrational number.

1

1

27) P(S)= 4S²-4S+1

$$4S^2-2S-2S+1=0$$

$$(2S-1)(2S-1)=0$$

$$S = \frac{1}{2}$$
 $S = \frac{1}{2}$

$$a = 4$$
 $b = -4$ $c = 1$ $\propto = \frac{1}{2}$ $\beta = \frac{1}{2}$

$$\propto +\beta = \frac{-b}{a}$$

LHS =
$$\propto +\beta = \frac{1}{2} + \frac{1}{2} = 1$$
 , RHS = $\frac{-b}{a} = \frac{-(-4)}{4} = 1$, hence proved

 $\propto \beta = \frac{c}{a}$

$$LHS = \alpha\beta = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
, $RHS = \frac{c}{a} = \frac{1}{4}$, hence proved

28) Let cost of one bat be Rs x

Let cost of one ball be Rs
$$y$$
 1/2

ATQ

$$4x + 1y = 2050$$
 (1)
 $3x + 2y = 1600$ (2)
 $from (1)4x + 1y = 2050$

$$y = 2050 - 4x$$
 1/2

Substite value of y in (2)

$$3x + 2(2050 - 4x) = 1600$$

$$3x + 4100 - 8x = 1600$$

$$3x + 4100 - 8x = 1600$$

$$x = 500$$

$$x = 500$$

$$x = 500$$

$$2000 + y = 2050$$

$$2000 + y = 2$$

1/2

BYJU'S
$$= \frac{(1-\cos\theta)^2}{1-\cos^2\theta}$$

$$= \frac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)}$$

$$= \frac{\frac{1-\cos\theta}{1-\cos\theta}}{1-\cos\theta} = \text{RHS}$$

$$= \frac{1-\cos\theta}{1-\cos\theta} = \text{RHS}$$

$$= \frac{1-\cos\theta}{1-\cos\theta} = \text{RHS}$$

$$= \frac{1}{1-\cos\theta} = \text{LHS} = \frac{1}{1-\cos\theta} = \frac{1}{1-\cos\theta}$$

1

1

1

1/2

1

1/2

1/2

1

$$= \frac{(1-\sin A)}{\cos A} \frac{(1+\sin A)}{\cos A}$$

$$=\frac{(1-\sin A)(1+\sin A)}{\cos^2 A}$$

$$=\frac{1-\sin^2A}{\cos^2A} \qquad (1-\sin^2A = \cos^2A)$$

= 1 = RHS

LHS=RHS. Hence Proved

31) (i) Red balls = 6, Black balls = 4, White balls = x

P(white ball) =
$$\frac{x}{10+x} = \frac{1}{3}$$

 \Rightarrow 3x = 10 + x \Rightarrow x= 5 white balls

(ii) Let y red balls be removed, black balls = 4, white balls = 5

P(white balls)=
$$\frac{5}{(6-y)+4+5} = \frac{1}{2}$$

 $\Rightarrow \frac{5}{15-y} = \frac{1}{2} \Rightarrow 10 = 15 - y \Rightarrow y = 5$

So 5 balls should be removed.

Section D

32) Let the speed of train be $x \, km/hr$

distance= 360 km

Speed =
$$\frac{distance}{time}$$

Time =
$$\frac{360}{r}$$
 1/2

New speed = (x + 5)km/hr

Time =
$$\frac{D}{5}$$

$$x + 5 = \frac{360}{\left(\frac{360}{x} - 1\right)}$$

 $(x+5)\left(\frac{360}{x}-1\right) = 360$

$$(x+5)(360-x) = 360x$$

$$-x^2 - 5x + 1800 = 0$$

x = -45

$x^2 + 5x - 1800 = 0$

$$x^2 + 45x - 40x - 1800 = 0$$

$$x(x+45) - 40(x+45) = 0$$

$$(x+45)(x-40) = 0$$

$$x + 45 = 0$$
 , $x - 40 = 0$
 $x = -45$, $x = 40$

Speed cannot be negative

OR

Let the speed of the stream=
$$xkm/hr$$

Speed of boat= 18 km/hr

Upstream speed= (18 - x)km/hr

Downstream speed=
$$(18 + x)km/hr$$

Time taken (upstream)= $\frac{24}{(18-x)}$

Time taken (downstream)=
$$\frac{24}{(18+x)}$$

ATQ

$$\frac{24}{(18-x)} = \frac{24}{(18+x)} + 1$$

$$\frac{24}{(18-x)} - \frac{24}{(18+x)} = 1$$

$$24(18+x) - 24(18-x) = (18-x)(18+x)$$

$$24(18 + x - 18 + x) = (18)^2 - x^2$$

$$24(2x) = 324 - x^2$$

$$48x - 324 + x^2 = 0$$

$$x^2 + 48x - 324 = 0$$

$$x^2 - 6x + 54x - 324 = 0$$

$$x(x-6) + 54(x-6) = 0$$

$$(x-6)(x+54)=0$$

$$x - 6 = 0$$
 , $x + 54 = 0$

$$x = 6 \qquad , \qquad x = -54$$

Speed cannot be negative

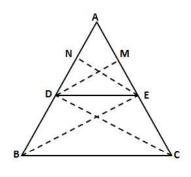
Speed of stream=6km/hr

33) Given $\triangle ABC$, DE | BC

To prove
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Draw DM \perp AC and EN \perp AB

Proof: Area of $\triangle ADE = \frac{1}{2} \times b \times h$


$$=\frac{1}{2}x$$
 AD x EN----(1)

Area
$$(\Delta DBE) = \frac{1}{2}x$$
 DB x EN-----(2)

Divide $eq^{n}(1)$ by (2)

$$\frac{\operatorname{ar} \Delta ADE}{\operatorname{ar} \Delta DBE} = \frac{\frac{1}{2}X AD X EN}{\frac{1}{2}X DB X EN} = \frac{AD}{DB} - - - - - - - (3)$$

area
$$\triangle ADE = \frac{1}{2} \times AE \times DM$$
 -----(4)

1

1/2

1/2

1

1

1

1/2

area $\Delta DEC = \frac{1}{2} \times EC \times DM$ -----(5)

Divide eqn (4) by (5)

 ΔBDE and ΔDEC are on the same base DE and between same parallel lines BC and DE

 $\therefore area(\Delta DBE) = ar(DEC)$

hence

$$\frac{ar(\Delta ADE)}{ar(\Delta DBE)} = \frac{ar(\Delta ADE)}{ar(\Delta DEC)}$$
 [LHS of (3) =RHS of (6)]

$$\frac{AD}{DB} = \frac{AE}{EC}$$
 [RHS of (3) = RHS of (6)

Since
$$\frac{PS}{SQ} = \frac{PT}{TR} : ST \parallel QR$$
 (by converse of BPT)

$$\angle PST = \angle PQR$$
 (Corresponding angles)

But
$$\angle PST = \angle PRQ$$
 (given)

$$\angle PQR = \angle PRQ$$

PR = PQ (sides opposite to equal angles are equal

Hence ΔPQR is isosceles.

1

1

1

1

1

1

1

34) Diameter of cylinder and hemisphere = 5mm radius, (r) = $\frac{5}{2}$

Total length = 14mm

CSA of cylinder = 2⁻rh

$$= 2 \times \frac{22}{7} \times \frac{5}{2} \times 9$$

$$=\frac{990}{7}$$
 mm²

CSA of hemispheres = $2 \times r^2$

$$=2x\frac{22}{7}x\left(\frac{5}{2}\right)^2$$

$$=\frac{275}{7}$$
 mm²

CSA of 2 hemispheres = $2 \times \frac{275}{7}$

$$=\frac{550}{7}\,\mathrm{mm}^2$$

Total area of capsule =
$$\frac{990}{7} + \frac{550}{7}$$

$$=\frac{1540}{7}$$

$$= 220 \text{ mm}^2$$

R

OR

Diameter of cylinder = 2.8 cm

radius of cylinder = $\frac{2.8}{2}$ = 1.4 cm

radius of cylinder = radius of hemisphere = 1.4 cm

Height of cylinder = 5-2.8

= 2.2 cm

Volume of 1 Gulab jamun = vol. of cylinder + 2 x vol. of hemisphere

$$= \overline{\wedge} r^2 h + 2 \times \frac{2}{3} \overline{\wedge} r^3$$

$$\frac{22}{7}$$
 x (1.4)² x 2.2 + 2 x $\frac{2}{3}$ x $\frac{22}{7}$ x (1.4)³

$$= 13.55 + 11.50$$

$$= 25.05 cm^3$$

1 $volume\ of\ 45\ Gulab\ jamun=45\ x25.05$

 $syrup\ in\ 45\ Gulab\ jamun=30\%\ x\ 45\ x\ 25.05$

$$=\frac{30}{100} \times 45 \times 25.05$$

= 338.175 cm³

 $\approx 338 \text{ cm}^3$

35)

Life time (in hours)	Number of lamps(f)	Mid x	d	fd
1500-2000	14	1750	-1500	-21000
2000-2500	56	2250	-1000	-56000
2500-3000	60	2750	-500	-30000
3000-3500	86	3250	0	0
3500-4000	74	3750	500	37000
4000-4500	62	4250	1000	62000
4500-5000	48	4750	1500	72000
	400			64000

$$Mean = a + \frac{\Sigma f d}{\Sigma f}$$

1/2

2

1

$$a = 3250$$

1/2

Mean =
$$3250 + \frac{64000}{400}$$

1

$$= 3250 + 160$$

 $= 3410$

Average life of lamp is 3410 hr

1

Section E

$$36) \, a_0 = 16000 \quad a_0 = 22600 \\ a + 5d = 16000 ------(1) \\ a + 8d = 22600 \quad ------(2) \\ \text{substitute } a = 1600 - 5d \, \text{from (1)} \\ 16000 - 5d + 8d = 22600 \\ 3d = 22600 - 16000 \\ 3d = 6600 \\ d = \frac{6600}{3} = 2200 \\ a = 16000 - 5(2200) \\ a = 16000 - 11000 \\ a = 5000 \\ (i) \, a_n = 29200, \, a = 5000, \quad d = 2200 \\ a_n = a + (n-1)d \\ 29200 = 5000 + (n-1)2200 \\ 29200 - 5000 + (n-1)2200 \\ 29200 - 5000 = 2200n - 2200 \\ 24200 + 2200 = 2200n - 2200 \\ 26400 - 2200n \\ n = \frac{264}{22} \\ n = 12 \\ in 12^{th} \, \text{year the production was Rs 29200} \\ (ii) \, n = 8, \, a = 5000, \quad d = 2200 \\ a_n = a + (n-1)d \\ = 5000 + (8-1)200 \\ = 5000 + (8-1)200 \\ = 5000 + 7 \times 2200 \\ = 5000 + 15400 \\ = 20400 \\ \text{The production during } 8^{th} \, \text{year is} = 20400 \\ \text{OR} \\ n = 3, \, \, a = 5000, \, d = 2200 \\ s_n = \frac{\pi}{2} \left[2a + (n-1)d \right] \\ = \frac{3}{2} \left[2(5000) + (3-1) 2200 \right] \\ s_3 = \frac{3}{2} \left[(10000 + 2 \times 2200) \right]$$

$$= \frac{3}{2} (10000 + 4400)$$

$$= 3 \times 7200$$

$$= 21600$$
The production during first 3 year is 21600

(iii) $3 = 3 + 3d$

(iii)
$$a_4 = a + 3d$$

$$= 5000 + 3 (2200)$$

 $a_7 = a + 6d$

$$= 5000 + 6 \times 2200$$

= 18200

$$a_7 - a_4 = 18200-11600 = 6600$$

37) coordinates of A (2, 3) Alia's house

coordinates of B (2, 1) Shagun's house

coordinates of C (4,1) Library

(i) AB =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(2 - 2)^2 + (1 - 3)^2}$
= $\sqrt{(0^2 + (-2)^2}$

$$AB = \sqrt{0+4} = \sqrt{4} = 2$$
 units

Alia's house from shagun's house is 2 units

CB =
$$\sqrt{(2-4)^2 + (1-1)^2}$$

= $\sqrt{(-2)^2 + 0^2}$

$$=\sqrt{4+0} = \sqrt{4} = 2$$
 unit

1

1/2

(iii) 0(0,0), B(2,1)

OB =
$$\sqrt{(2-0)^2 + (1-0)^2}$$

= $\sqrt{2^2 + 1^2}$ = $\sqrt{4+1}$ = $\sqrt{5}$ units

Distance between Alia's house and Shagun's house, AB = 2 units

For shagun, school [O] is farther than Alia's house [A] and Library [C]

OR

$$CA = \sqrt{(2-4)^2 + (3-1)^2}$$

OB is greater than AB and CB,

BYJU'S
The Learning App
$$= \sqrt{(-2)^2 + 2^2} + = \sqrt{4+4} = \sqrt{8}$$

=
$$2\sqrt{2}$$
 units

$$AC^2 = 8$$

1

100m

Distance between Alia's house and Shagun's house, AB = 2 units

Distance between Library and Shagun's house, CB = 2 units

1/2

$$AB^2 + BC^2 = 2^2 + 2^2 = 4 + 4 = 8 = AC^2$$

1/2

Therefore A, B and C form an isosceles right triangle.

38)

(i) XY | PQ and AP is transversal.

∠APD = ∠PAX (alternative interior angles)

1/2

(ii) \angle YAQ = 30°

$$\angle AQD = 30^{\circ}$$

1/2

1/2

Because XY || PQ and AQ is a transversal so alternate interior angles are equal

1/2

(iii) In ∆ ADP

$$\tan 45^\circ = \frac{100}{PD}$$

1/2

$$1 = \frac{100}{PD}$$

1/2

Boat P is 100 m from the light house

1

OR

In ΔADQ

$$\tan 30^0 = \frac{100}{DO}$$

1/2

$$\frac{1}{\sqrt{3}} = \frac{100}{DQ}$$

1/2

$$DQ = 100\sqrt{3} \text{ m}$$

Boat Q is $100\sqrt{3}$ m from the light house

1