Marking Scheme
 Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours
MAX.MARKS: $\mathbf{8 0}$

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) $x y^{2}$	1
2.	(b) 1 zero and the zero is ' 3 '	1
3.	(b) $\frac{a 1}{a 2}=\frac{b 1}{b 2} \neq \frac{c 1}{c 2}$	1
4.	(c) 2 distinct real roots	1
5.	(c) 7	1
6.	(a) 1:2	1
7.	(d) infinitely many	1
8.	(b) $\frac{a c}{b+c}$	1
9.	(b) 100°	1
10.	(d) 11 cm	1
11.	(c) $\frac{\sqrt{b^{2}-a^{2}}}{b}$	1
12.	(d) $\cos \mathrm{A}$	1
13.	(d) 60°	1
14.	(a) 2 units	1
15.	(a) 10 m	1
16.	(b) $\frac{4-\pi}{4}$	1
17.	(b) $\frac{22}{46}$	1
18.	(d) 150	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	(c) Assertion (A) is true but reason (R) is false.	1
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational. So, we can find integers a and b such that $\sqrt{2}=\frac{a}{b}$ where a and b are coprime. $\text { So, } b \sqrt{2}=\mathrm{a} \text {. }$ Squaring both sides, we get $2 b^{2}=a^{2}$. Therefore, 2 divides a^{2} and so 2 divides a. So, we can write $\mathrm{a}=2 \mathrm{c}$ for some integer c . Substituting for a, we get $2 b^{2}=4 c^{2}$, that is, $b^{2}=2 c^{2}$. This means that 2 divides b^{2}, and so 2 divides b Therefore, a and b have at least 2 as a common factor. But this contradicts the fact that a and b have no common factors other than 1. This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational. So, we conclude that $\sqrt{2}$ is irrational.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

\begin{tabular}{|c|c|c|}
\hline 22. \& \begin{tabular}{l}
ABCD is a parallelogram. \\
\(A B=D C=a\) \\
Point P divides AB in the ratio 2:3
\[
\mathrm{AP}=\frac{2}{5} \mathrm{a}, \mathrm{BP}=\frac{3}{5} \mathrm{a}
\] \\
point Q divides DC in the ratio 4:1.
\[
\begin{aligned}
\& \mathrm{DQ}=\frac{4}{5} \mathrm{a}, \mathrm{CQ}=\frac{1}{5} \mathrm{a} \\
\& \triangle \mathrm{APO} \sim \triangle \mathrm{CQO}[\mathrm{AA} \text { similarity }] \\
\& \\
\& \quad \frac{A P}{C Q}=\frac{P O}{Q O}=\frac{A O}{C O} \\
\& \frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\frac{2}{5} \mathrm{a}}{\frac{1}{5} \mathrm{a}}=\frac{2}{1} \Rightarrow \mathrm{OC}=1 / 2 \mathrm{OA}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline 23. \& \(\mathrm{PA}=\mathrm{PB} ; \mathrm{CA}=\mathrm{CE} ; \mathrm{DE}=\mathrm{DB}\) [Tangents to a circle]
\[
\text { Perimeter of } \begin{aligned}
\triangle \mathrm{PCD} \& =\mathrm{PC}+\mathrm{CD}+\mathrm{PD} \\
\& =\mathrm{PC}+\mathrm{CE}+\mathrm{ED}+\mathrm{PD} \\
\& =\mathrm{PC}+\mathrm{CA}+\mathrm{BD}+\mathrm{PD} \\
\& =\mathrm{PA}+\mathrm{PB}
\end{aligned}
\]
\[
\text { Perimeter of } \triangle \mathrm{PCD}=\mathrm{PA}+\mathrm{PA}=2 \mathrm{PA}=2(10)=20
\] cm \& \(1 / 2\)

1
$1 / 2$

\hline 24. \& | $\begin{array}{ll} \because \tan (A+B)=\sqrt{3} & \therefore A+B=60^{\circ} \\ \because \tan (A-B)=\frac{1}{\sqrt{3}} & \therefore A-B=30^{\circ} \tag{2} \end{array}$ |
| :--- |
| Adding (1) \& (2), we get $2 \mathrm{~A}=90^{\circ} \Rightarrow A=45^{\circ}$ |
| Also (1) -(2), we get $2 B=30^{\circ} \Rightarrow B=45^{\circ}$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

\hline \& [or] \&

\hline \& $$
\begin{array}{ll}
2 \operatorname{cosec}^{2} 30+x \sin ^{2} 60-\frac{3}{4} \tan ^{2} 30=10 \\
\Rightarrow & 2(2)^{2}+x\left(\frac{\sqrt{3}}{2}\right)^{2}-\frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^{2}=10 \\
\Rightarrow & 2(4)+x\left(\frac{3}{4}\right)-\frac{3}{4}\left(\frac{1}{3}\right)=10 \\
\Rightarrow & 8+x\left(\frac{3}{4}\right)-\frac{1}{4}=10 \\
\Rightarrow & 32+x(3)-1=40 \\
\Rightarrow & 3 x=9 \Rightarrow x=3
\end{array}
$$ \& 1

$1 / 2$
$1 / 2$

\hline 25. \& $$
\begin{aligned}
\text { Total area removed } & =\frac{\angle A}{360} \pi r^{2}+\frac{\angle B}{360} \pi r^{2}+\frac{\angle C}{360} \pi r^{2} \\
& =\frac{\angle A+\angle B+\angle C}{360} \pi r^{2} \\
& =\frac{180}{360} \pi r^{2} \\
& =\frac{180}{360} \times \frac{22}{7} \times(14)^{2} \\
& =308 \mathrm{~cm}^{2}
\end{aligned}
$$ \& $1 / 2$

$1 / 2$
$1 / 2$

\hline \& [or] \&

\hline \& | The side of a square $=$ Diameter of the semi-circle $=\mathrm{a}$ |
| :--- |
| Area of the unshaded region |
| $=$ Area of a square of side ' a ' +4 (Area of a semi-circle of diameter 'a') |
| The horizontal/vertical extent of the white region $=14-3-3=8 \mathrm{~cm}$ |
| Radius of the semi-circle + side of a square + Radius of the semi-circle $=8 \mathrm{~cm}$ | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

	$\begin{aligned} & 2 \text { (radius of the semi-circle) + side of a square }=8 \mathrm{~cm} \\ & \text { Area of the unshaded region } \\ & =\text { Area of a square of side } 4 \mathrm{~cm}+4 \text { (Area of a semi-circle of diameter } 4 \mathrm{~cm} \text {) } \\ & =(4)^{2}+4 \times \frac{1}{2} \pi(2)^{2}=16+8 \pi \mathrm{~cm}^{2} \end{aligned}$	1/2
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	Number of students in each group subject to the given condition $=\operatorname{HCF}(60,84,108)$ $\operatorname{HCF}(60,84,108)=12$ Number of groups in Music $=\frac{60}{12}=5$ Number of groups in Dance $=\frac{84}{12}=7$ Number of groups in Handicrafts $=\frac{108}{12}=9$ Total number of rooms required $=21$	1/2
27.	$\begin{aligned} & \mathrm{P}(\mathrm{x})=5 x^{2}+5 x+1 \\ & \alpha+\beta=\frac{-b}{a}=\frac{-5}{5}=-1 \\ & \begin{aligned} \alpha \beta=\frac{c}{a}= & \frac{1}{5} \\ \alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\ & =(-1)^{2}-2\left(\frac{1}{5}\right) \\ & =1-\frac{2}{5}=\frac{3}{5} \end{aligned} \\ & \alpha^{-1}+\beta^{-1} \end{aligned}=\frac{1}{\alpha}+\frac{1}{\beta} .$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
28.	Let the ten's and the unit's digits in the first number be x and y , respectively. So, the original number $=10 x+y$ When the digits are reversed, x becomes the unit's digit and y becomes the ten's Digit. So the obtain by reversing the digits $=10 y+x$ According to the given condition. $\begin{array}{lrl} (10 x+y)+(10 y+x) & =66 \\ \text { i.e., } & 11(x+y) & =66 \\ \text { i.e., } & x+y & =6---(1) \end{array}$ We are also given that the digits differ by 2 , therefore, either $x-y=2$---- (2) $\text { or } y-x=2---(3)$ If $\mathrm{x}-\mathrm{y}=2$, then solving (1) and (2) by elimination, we get $\mathrm{x}=4$ and $\mathrm{y}=2$. In this case, we get the number 42. If $\mathrm{y}-\mathrm{x}=2$, then solving (1) and (3) by elimination, we get $\mathrm{x}=2$ and $\mathrm{y}=4$. In this case, we get the number 24. Thus, there are two such numbers 42 and 24.	11/2
	[or]	
	Let $\frac{1}{\sqrt{x}}$ be ' m ' and $\frac{1}{\sqrt{y}}$ be ' n ', Then the given equations become $\begin{array}{r} 2 m+3 n=2 \\ 4 m-9 n=-1 \\ \hline \end{array}$	1/2

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{array}{ccc}
(2 \mathrm{~m}+3 \mathrm{n}=2) \mathrm{X}-2 \Rightarrow-4 m-6 n=-4 \& \ldots(1) \\
4 \mathrm{~m}-9 \mathrm{n}=-1 \& 4 m-9 n=-1 \& \ldots(2) \\
\& \text { Adding (1) and (2) } \\
\& \text { We get }-15 n=-5 \Rightarrow n=\frac{1}{3}
\end{array}
\] \\
Substituting \(\mathrm{n}=\frac{1}{3}\) in \(2 \mathrm{~m}+3 \mathrm{n}=2\), we get
\[
\begin{aligned}
\& 2 \mathrm{~m}+1=2 \\
\& 2 \mathrm{~m}=1 \\
\& \mathrm{~m}=\frac{1}{2} \\
\& \mathrm{~m}=\frac{1}{2} \quad \Rightarrow \sqrt{x}=2 \Rightarrow \mathrm{x}=4 \text { and } \mathrm{n}=\frac{1}{3} \quad \Rightarrow \sqrt{y}=3 \Rightarrow \mathrm{y}=9
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
1 \\
\hline 29. \& \begin{tabular}{l}
\[
\angle O A B=30^{\circ}
\] \\
\(\angle \mathrm{OAP}=90^{\circ}\) [Angle between the tangent and the radius at the point of contact]
\[
\angle \mathrm{PAB}=90^{\circ}-30^{\circ}=60^{\circ}
\] \\
\(\mathrm{AP}=\mathrm{BP}\) [Tangents to a circle from an external point] \\
\(\angle \mathrm{PAB}=\angle \mathrm{PBA}\) [Angles opposite to equal sides of a triangle] \\
In \(\triangle \mathrm{ABP}, \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ}\) [Angle Sum Property]
\[
\begin{aligned}
60^{\circ}+60^{\circ}+\angle \mathrm{APB} \& =180^{\circ} \\
\angle \mathrm{APB} \& =60^{\circ}
\end{aligned}
\] \\
\(\therefore \triangle \mathrm{ABP}\) is an equilateral triangle, where \(\mathrm{AP}=\mathrm{BP}=\mathrm{AB}\).
\[
\mathrm{PA}=6 \mathrm{~cm}
\] \\
In Right \(\triangle \mathrm{OAP}, \angle \mathrm{OPA}=30^{\circ}\)
\[
\begin{aligned}
\tan 30^{\circ} \& =\frac{O A}{P A} \\
\frac{1}{\sqrt{3}} \& =\frac{O A}{6} \\
O A \& =\frac{6}{\sqrt{3}}=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline \& \& \\
\hline \& \[
\begin{aligned}
\& \text { Let } \angle \mathrm{TPQ}=\theta \\
\& \angle \mathrm{TPO}=90^{\circ} \text { [Angle between the tangent and } \\
\& \quad \text { the radius at the point of contact] } \\
\& \angle \mathrm{OPQ}=90^{\circ}-\theta \\
\& \mathrm{TP}=\mathrm{TQ} \quad[\text { Tangents to a circle from an external } \\
\& \text { point } \quad \begin{array}{l}
\angle \mathrm{TPQ}=\angle \mathrm{TQP}=\theta \text { [Angles opposite to equal sides of a triangle] } \\
\text { In } \triangle \mathrm{PQT}, \angle \mathrm{PQT}+\angle \mathrm{PPT}+\angle \mathrm{PTQ}=180^{\circ} \text { [Angle Sum Property] } \\
\theta+\theta+\angle \mathrm{PTQ}=180^{\circ} \\
\angle \mathrm{PTQ}=180^{\circ}-2 \theta \\
\angle \mathrm{PTQ}=2\left(90^{\circ}-\theta\right) \\
\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ} \quad \text { [using (1)] }
\end{array}
\end{aligned}
\] \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

\hline 30. \& | Given, $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$ |
| :--- |
| Dividing both sides by $\cos ^{2} \theta$, $\begin{gathered} \frac{1}{\cos ^{2} \theta}+\tan ^{2} \theta=3 \tan \theta \\ \sec ^{2} \theta+\tan ^{2} \theta=3 \tan \theta \\ 1+\tan ^{2} \theta+\tan ^{2} \theta=3 \tan \theta \\ 1+2 \tan ^{2} \theta=3 \tan \theta \\ 2 \tan ^{2} \theta-3 \tan \theta+1=0 \end{gathered}$ |
| If $\tan \theta=x$, then the equation becomes $2 x^{2}-3 x+1=0$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

\hline
\end{tabular}

	$\text { Therefore, } \begin{aligned} \frac{1}{x}+\frac{1}{x-10} & =\frac{8}{75} \\ 8 x^{2}-230 x+750 & =0 \\ x & =25, \frac{30}{8} \end{aligned}$ Time taken by the smaller pipe cannot be $30 / 8=3.75$ hours, as the time taken by the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe and the larger pipe will be 25 and $25-10=15$ hours, respectively.	$1 / 2$ 1 $1 / 2$ $1 / 2$	
33.	(a) Statement $-1 / 2$ Given and To Prove - $1 / 2$ Figure and Construction $1 / 2$ Proof-1 $1 / 2$ [b] Draw DG \|	BE In $\triangle \mathrm{ABE}, \frac{A B}{B D}=\frac{A E}{G E}[\mathrm{BPT}]$ $\mathrm{CF}=\mathrm{FD} \quad[\mathrm{F}$ is the midpoint of DC$]--$ (i) In $\Delta \mathrm{CDG}, \frac{D F}{C F}=\frac{G E}{C E}=1$ [Mid point theorem] $\mathrm{GE}=\mathrm{CE}-- \text {-(ii) }$ $\angle \mathrm{CEF}=\angle \mathrm{CFE} \text { [Given] }$ CF = CE [Sides opposite to equal angles] ---(iii) From (ii) \& (iii) CF = GE ---(iv) From (i) \& (iv) GE = FD $\therefore \frac{A B}{B D}=\frac{A E}{G E} \Rightarrow \frac{A B}{B D}=\frac{A E}{F D}$	3 $11 / 2$ $11 / 2$ $1 / 2$ $11 / 2$
34.	Length of the pond, $\mathrm{l}=50 \mathrm{~m}$, width of the pond, $\mathrm{b}=44 \mathrm{~m}$ Water level is to rise by, $\mathrm{h}=21 \mathrm{~cm}=\frac{21}{100} \mathrm{~m}$ Volume of water in the pond $=l b h=50 \times 44 \times \frac{21}{100} \mathrm{~m}^{3}=462 \mathrm{~m}^{3}$ Diameter of the pipe $=14 \mathrm{~cm}$ Radius of the pipe, $\mathrm{r}=7 \mathrm{~cm}=\frac{7}{100} \mathrm{~m}$ Area of cross-section of pipe $=\pi r^{2}$ $=\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100}=\frac{154}{10000} \mathrm{~m}^{2}$ Rate at which the water is flowing through the pipe, $\mathrm{h}=15 \mathrm{~km} / \mathrm{h}=15000 \mathrm{~m} / \mathrm{h}$ Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water coming out of pipe $\begin{aligned} \text { Time required to fill the pond } & =\frac{=\left(\frac{154}{10000} \times 15000\right) \mathrm{m}^{3}}{\text { Volume of the pond }} \\ & =\frac{462 \times 10000}{154 \times 15000}=2 \text { hours } \end{aligned}$ Speed of water if the rise in water level is to be attained in 1 hour $=30 \mathrm{~km} / \mathrm{h}$	1 $1 / 2$ $1 / 2$ 1	
	[or]		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
Radius of the cylindrical tent (r) Total height of the ten Height of the cylinde Height of the Conical pa \\
Slant height of the cone \((l)=\sqrt{h^{2}}\)
\[
=\sqrt{3}
\] \\
Curved surface area of cylindri \\
Curved surface area of conical \\
Total curved surface area \(=26\) \\
Provision for stitching and was \\
Area of canvas to be purchased \\
Cost of canvas \(=\) Rate \(\times\) Surface
\[
=500 \times 1060=
\]
\end{tabular} \& \begin{tabular}{l}
14 m \\
13.5 m \\
3 m \\
\(=10.5 \mathrm{~m}\)
\[
+r^{2}
\]
\[
\begin{aligned}
\& \frac{.5)^{2}+(14)^{2}}{.25+196} \\
\& .25=17.5 \mathrm{~m}
\end{aligned}
\] \\
portion
\[
\begin{aligned}
\& =2 \pi r h \\
\& =2 x \frac{22}{7} \times 14 \times \\
\& =264 \mathrm{~m}^{2} \\
\& \text { tion } \\
\& =\pi r l \\
\& =\frac{22}{7} \times 14 \times 17.5 \\
\& =770 \mathrm{~m}^{2} \\
\& n^{2}+770 \mathrm{~m}^{2}= \\
\& =
\end{aligned}
\] \\
a \\
30,000/-
\end{tabular} \& \[
\begin{array}{r}
034 \mathrm{~m}^{2} \\
26 \mathrm{~m}^{2} \\
060 \mathrm{~m}^{2}
\end{array}
\] \& \begin{tabular}{l}
10.5 m \\
3 m
\end{tabular} \& \(1 / 2\)
1
1

1
1

1

\hline 35. \& | Marks obtained |
| :---: |
| $20-30$ |
| $30-40$ |
| $40-50$ |
| $50-60$ |
| $60-70$ |
| $70-80$ |
| $80-90$ |

\[
$$
\begin{gathered}
\mathrm{p}+\mathrm{q}+78=90 \\
\mathrm{p}+\mathrm{q}=12 \\
\text { Median }=(l)+\frac{\frac{n}{2}-c f}{f} \cdot \mathrm{~h} \\
50=50+\frac{45-(p+40)}{20} \cdot 10 \\
\frac{45-(p+40)}{20} \cdot 10=0 \\
45-(p+40)=0 \\
\mathrm{P}=5 \\
5+\mathrm{q}=12 \\
\mathrm{q}=7 \\
\text { Mode }=l+\frac{f 1-f 0}{2 f 1-f 0-f 2} \cdot \mathrm{~h}
\end{gathered}
$$

\] \& | Number of
 students |
| :---: |
| p |
| 15 |
| 25 |
| 20 |
| q |
| 8 |
| 10 |
| 90 | \& | Cumulative
 frequency |
| :---: |
| p |
| $p+15$ |
| $p+40$ |
| $p+60$ |
| $p+q+60$ |
| $p+q+68$ |
| $p+q+78$ | \& \& 1

1
$1 / 2$
$1 / 2$

$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
1
1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& =40+\frac{25-15}{2(25)-15-20} \cdot 10 \\
\& =40+\frac{100}{15}=40+6.67=46.67
\end{aligned}
\] \& \\
\hline \& SECTION E \& \\
\hline 36. \& \[
\text { (i) Number of throws during camp. } \mathrm{a}=40 ; \mathrm{d}=12 \mathrm{t}, \begin{aligned}
\& t_{11}=a+10 \mathrm{~d} \\
\& =40+10 \times 12 \\
\& =160 \text { throws } \\
\& \hline
\end{aligned}
\] \& 1 \\
\hline \& \begin{tabular}{l}
\[
\text { (ii) } \begin{array}{rl}
\mathrm{a}=7.56 \mathrm{~m} ; \mathrm{d}=9 \mathrm{~cm}=0.09 \mathrm{~m} \\
\mathrm{n} \& =6 \text { weeks } \\
\mathrm{t}_{\mathrm{n}} \& =\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\& =7.56+6(0.09) \\
\& =7.56+0.54 \\
\text { Sanjitha's throw distance at the end of } 6 \text { weeks }=8.1 \mathrm{~m} \\
\text { (or) } \\
\mathrm{a}=7.56 \mathrm{~m} ; \mathrm{d}=9 \mathrm{~cm}=0.09 \mathrm{~m} \\
\mathrm{t}_{\mathrm{n}} \& =11.16 \mathrm{~m} \\
\mathrm{t}_{\mathrm{n}} \& \mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
11.16 \& =7.56+(\mathrm{n}-1)(0.09) \\
3.6=(\mathrm{n}-1)(0.09) \\
\mathrm{n}-1 \& =\frac{3.6}{0.09}=40 \\
\mathrm{n}=41
\end{array}
\] \\
Sanjitha's will be able to throw 11.16 m in 41 weeks.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \\
\hline \& \[
\text { (iii) } \begin{aligned}
\mathrm{a}= \& 40 ; \mathrm{d}=12 ; \mathrm{n}=15 \\
\mathrm{~S}_{\mathrm{n}} \& =\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
\mathrm{S}_{\mathrm{n}} \& =\frac{15}{2}[2(40)+(15-1)(12)] \\
\& =\frac{15}{2}[80+168] \\
\& =\frac{15}{2}[248]=1860 \text { throws }
\end{aligned}
\] \& \(1 / 2\)

$11 / 2$

\hline 37. \& | (i) Let D be (a, b), then $\begin{aligned} & \text { Mid point of AC }=\text { Midpoint of BD } \\ & \begin{array}{cc} \left(\frac{1+6}{2}, \frac{2+6}{2}\right)=\left(\frac{4+a}{2}, \frac{3+b}{2}\right) \\ 4+\mathrm{a}=7 & 3+\mathrm{b}=8 \\ \mathrm{a}=3 & \mathrm{~b}=5 \end{array} \end{aligned}$ |
| :--- |
| Central midfielder is at $(3,5)$ | \& $1 / 2$

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(ii)
\[
\begin{gathered}
\mathrm{GH}=\sqrt{(-3-3)^{2}+(5-1)^{2}}=\sqrt{36+16}=\sqrt{52}=2 \sqrt{13} \\
\mathrm{GK}=\sqrt{(0+3)^{2}+(3-5)^{2}}=\sqrt{9+4}=\sqrt{13} \\
\mathrm{HK}=\sqrt{(3-0)^{2}+(1-3)^{2}}=\sqrt{9+4}=\sqrt{13}
\end{gathered}
\] \\
\(\mathrm{GK}+\mathrm{HK}=\mathrm{GH} \Rightarrow \mathrm{G}, \mathrm{H} \& \mathrm{~K}\) lie on a same straight line
[or]
\[
\begin{aligned}
\& C J=\sqrt{(0-5)^{2}+(1+3)^{2}}=\sqrt{25+16}=\sqrt{41} \\
\& C I=\sqrt{(0+4)^{2}+(1-6)^{2}}=\sqrt{16+25}=\sqrt{41}
\end{aligned}
\] \\
Full-back J(5,-3) and centre-back I(\(-4,6\)) are equidistant from forward \(\mathrm{C}(0,1)\) \\
Mid-point of \(\mathrm{IJ}=\left(\frac{5-4}{2}, \frac{-3+6}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)\) \\
C is NOT the mid-point of IJ
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

\hline \& $$
\begin{aligned}
& \text { (iii) A,B and E lie on the same straight line and } \mathrm{B} \text { is equidistant from } \mathrm{A} \text { and } \mathrm{E} \\
& \quad \Rightarrow \mathrm{~B} \text { is the mid-point of } \mathrm{AE} \\
& \left(\frac{1+a}{2}, \frac{4+b}{2}\right)=(2,-3) \\
& 1+a=4 ; \mathrm{a}=3 .
\end{aligned}
$$ \& $1 / 2$

$1 / 2$

\hline 38. \& (i) $\tan 45^{\circ}=\frac{80}{C B} \Rightarrow \mathrm{CB}=80 \mathrm{~m}$ \& 1

\hline \& | (ii) $\begin{aligned} & \tan 30^{\circ}=\frac{80}{C E} \\ & \Rightarrow \frac{1}{\sqrt{3}}=\frac{80}{C E} \\ & \Rightarrow C E=80 \sqrt{3} \end{aligned}$ |
| :--- |
| Distance the bird flew $=\mathrm{AD}=\mathrm{BE}=\mathrm{CE}-\mathrm{CB}=80 \sqrt{3}-80=80(\sqrt{3}-1) \mathrm{m}$ |
| (or) $\begin{aligned} & \tan 60^{\circ}=\frac{80}{C G} \\ & \Rightarrow \quad \sqrt{3}=\frac{80}{C G} \\ & \Rightarrow \quad C G=\frac{80}{\sqrt{3}} \end{aligned}$ |
| Distance the ball travelled after hitting the tree $=\mathrm{FA}=\mathrm{GB}=\mathrm{CB}-\mathrm{CG}$ $\mathrm{GB}=80-\frac{80}{\sqrt{3}}=80\left(1-\frac{1}{\sqrt{3}}\right) \mathrm{m}$ | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$

\hline \& \& $1 / 2$
$1 / 2$

\hline
\end{tabular}

