

CBSE Class 10 Maths Standard Marking Scheme 2023-24

Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours MAX.MARKS: 80

1 1101	E. 5 Hours		
	SECTION A		
	Section A consists of 20 questions of 1 mark each.		
1.	(b) xy ²	1	
2.	(b) 1 zero and the zero is '3'	1	
3.	(b) $\frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2}$	1	
4.	(c) 2 distinct real roots	1	
5.	(c) 7	1	
6.	(a) 1:2	1	
7.	(d) infinitely many	1	
8.	(b) $\frac{ac}{b+c}$	1	
9.	(b) 100°	1	
10.	(d) 11 cm	1	
11.	$\sqrt{b^2-a^2}$	1	
	(c) ———		
12	(d) cos A	1	
12.	(d) 60°	1	
13.		1	
14.	(a) 2 units	1	
15.	(a) 10m	1	
16.	$\begin{array}{c} \text{(b)} \frac{4-\pi}{4} \\ \text{22} \end{array}$	1	
17.	(b) $\frac{22}{46}$	1	
18.	(d) 150		
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1	
20.	(c) Assertion (A) is true but reason (R) is false.	1	
	SECTION B		
	Section B consists of 5 questions of 2 marks each.		
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational.		
	So, we can find integers a and b such that $\sqrt{2} = \frac{a}{b}$ where a and b are coprime.	1/2	
	So, b $\sqrt{2}$ = a.		
	Squaring both sides,		
	we get $2b^2 = a^2$.	1/	
	Therefore, 2 divides a ² and so 2 divides a.	1/2	
	So, we can write a = 2c for some integer c.		
	Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$.	1/	
	This means that 2 divides b ² , and so 2 divides b	1/2	
	Therefore, a and b have at least 2 as a common factor.		
	But this contradicts the fact that a and b have no common factors other than 1.	1/	
	This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.	1/2	
	So, we conclude that $\sqrt{2}$ is irrational.		
		•	

	e Learning App	
22.	ABCD is a parallelogram.	1/2
	AB = DC = a	
	Point P divides AB in the ratio 2:3	
	$AP = \frac{2}{5} a, BP = \frac{3}{5} a$	
	point Q divides DC in the ratio 4:1.	1/2
	$DQ = \frac{4}{5} a, CQ = \frac{1}{5} a$	72
	5 5	
	Δ APO \sim Δ CQO [AA similarity]	1/2
	$\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$	
	2	1/2
	$\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{1}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$	
	$\frac{1}{CO} - \frac{1}{\frac{1}{5}a} - \frac{1}{1} \rightarrow 0C - \frac{1}{2}OA$	
23.		
	PA = PB; CA = CE; DE = DB [Tangents to a circle]	1/2
	Perimeter of $\triangle PCD = PC + CD + PD$	
	= PC + CE + ED + PD $PC + CA + PD + PD$	
	= PC + CA + BD + PD = PA + PB	1
	Perimeter of APCD = $PA + PA = 2PA = 2(10) = 20$	1/2
	cm $B = PA + PA = 2PA = 2(10) = 20$	/2
24.	$\therefore \tan(A+B) = \sqrt{3} \therefore A+B = 60^{0} \qquad \dots (1)$	1/2
	$\therefore \tan(A-B) = \frac{1}{\sqrt{3}} \therefore A-B = 30^{\circ} \qquad \dots(2)$	1/2
	Adding (1) & (2), we get $2A=90^0 \implies A=45^0$	1/2
	Also (1) –(2), we get $2B = 30^{\circ} \Rightarrow B = 45^{\circ}$	1/2
	[or]	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	•	
	$\Rightarrow 2(2)^2 + x \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} \left(\frac{1}{\sqrt{3}}\right)^2 = 10$	1
	$\Rightarrow 2(4) + x\left(\frac{3}{4}\right) - \frac{3}{4}\left(\frac{1}{3}\right) = 10$	1/2
	$\Rightarrow \qquad 8 + x\left(\frac{3}{4}\right) - \frac{1}{4} = 10$	
	$\Rightarrow 32 + x(3) - 1 = 40$	1/2
	$\Rightarrow 3x = 9 \Rightarrow x = 3$	
25.	$\Rightarrow 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$	1/2
	$= \frac{{\frac{{360}}{{260}}\pi {r^2}}}{{\frac{{180}}{{360}}\pi {r^2}}}$ $= \frac{{\frac{{180}}{{360}}\pi {r^2}}}{{360}}$	
	$\frac{360}{180}$	1/2
	$=\frac{1}{360}$ 17.	72
	$= \frac{180}{360} \times \frac{22}{7} \times (14)^2$	1/2
	$= 308 \text{ cm}^2$	
	[or]	
	— 14 cm → — — — — — — — — — — — — — — — — — —	
	The side of a square = Diameter of the semi-circle = a	1/
	Area of the unshaded region = Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a')	1/2
	The horizontal/vertical extent of the white region = 14-3-3 = 8 cm	1/2
	Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm	'2
	1	_1

The Le	arning App	
	2 (radius of the semi-circle) + side of a square = 8 cm	
	$2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$	1/2
	Area of the unshaded region	
	= Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)	
	$= (4)^2 + 4 \times \frac{1}{2} \pi (2)^2 = 16 + 8\pi \text{ cm}^2$	1/2
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	Number of students in each group subject to the given condition = HCF (60,84,108)	1/2
	HCF (60,84,108) = 12	1/2
	Number of groups in Music = $\frac{60}{12}$ = 5	
	12	1/2
	Number of groups in Dance = $\frac{84}{12}$ = 7	1/2
	Number of groups in Handicrafts = $\frac{108}{12}$ = 9	1/2
	12	1/2
0.5	Total number of rooms required = 21	1.
27.	$P(x) = 5x^2 + 5x + 1$	1/2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{a} = -1$	1,
	$\begin{pmatrix} a & 5 \\ c & 1 \end{pmatrix}$	1/2
	$\alpha\beta = \frac{1}{a} = \frac{1}{5}$	1/2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha \beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	1/2
	$=(-1)^2-2\left(\frac{1}{5}\right)$	72
	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	1/2
	$= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$	/2
	1 1 1	1/2
	$\alpha^{-1} + \beta^{-1} = \frac{-}{\alpha} + \frac{-}{\beta}$	'2
	$(\alpha+\beta)$ (-1)	
	$=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{2}}=-5$	
20	5	
28.	Let the ten's and the unit's digits in the first number be x and y, respectively.	
	So, the original number = 10x + y When the digits are reversed, y becomes the unit's digit and y becomes the ten's	
	When the digits are reversed, x becomes the unit's digit and y becomes the ten's	1/2
	Digit. So the obtain by reversing the digits= $10y + x$	72
	According to the given condition.	
	(10x + y) + (10y + x) = 66	
	i.e., $11(x+y) = 66$	1/2
	i.e., $x + y = 6 (1)$	/ -
	We are also given that the digits differ by 2,	1/2
	therefore, either $x - y = 2$ (2)	1/2
	or $y - x = 2 - (3)$	
	If $x - y = 2$, then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$.	1/2
	In this case, we get the number 42.	
	If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$.	1/2
	In this case, we get the number 24.	
	Thus, there are two such numbers 42 and 24.	_
	[or]	
	Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n',	1/2
	Then the given equations become	
	2m + 3n = 2	1.
	4m - 9n = -1	1/2

Th	e Learning App	
	$(2m + 3n = 2) X-2 \Rightarrow -4m - 6n = -4$ (1)	
	4m - 9n = -1 $4m - 9n = -1$ (2)	
	Adding (1) and (2)	
		1/2
	We get $-15n = -5 \Rightarrow n = \frac{1}{3}$	/2
	Substituting $n = \frac{1}{3}$ in 2m + 3n = 2, we get	1/2
	2m + 1 = 2	72
	2m + 1 - 2 $2m = 1$	
	$m = \frac{1}{2}$	1
	$m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$	
20	$\frac{1}{2} \rightarrow \sqrt{x-2} \rightarrow x-1 \text{ and } 1 - \frac{1}{3} \rightarrow \sqrt{y-3} \rightarrow y-3$	
29.		
	$\angle OAB = 30^{\circ}$	
	∠OAP = 90° [Angle between the tangent and	
	the radius at the point of contact]	
	$\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1/2
	AP = BP [Tangents to a circle from an external point]	
	∠PAB = ∠PBA [Angles opposite to equal sides of a triangle]	1/2
	In ΔABP, ∠PAB + ∠PBA + ∠APB = 180° [Angle Sum Property]	-
	$60^{\circ} + 60^{\circ} + \angle APB = 180^{\circ}$	
	∠APB = 60°	1/2
		72
	∴ \triangle ABP is an equilateral triangle, where AP = BP = AB.	1/
	PA = 6 cm	1/2
	In Right $\triangle OAP$, $\angle OPA = 30^{\circ}$	
	$\tan 30^{\circ} = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$	
	$\frac{1}{2} = \frac{OA}{OA}$	1/2
	$\sqrt{3}$ $-\frac{6}{6}$	
	$OA = \frac{6}{\sqrt{2}} = 2\sqrt{3}cm$	1/2
	[or]	
	Let $\angle TPQ = \theta$	
	\angle TPO = 90° [Angle between the tangent and	1/2
	the radius at the point of contact]	/2
	$\angle OPQ = 90^{\circ} - \theta$	
	TP = TQ [Tangents to a circle from an external	
	point]	1/
	$\angle TPQ = \angle TQP = \theta$ [Angles opposite to equal sides of a triangle]	1/2
	In $\triangle PQT$, $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]	1/2
	$\theta + \theta + \angle PTQ = 180^{\circ}$	1/2
	· · · · · · · · · · · · · · · · · · ·	
	$\angle PTQ = 180^{\circ} - 2 \theta$	1/2
	$\angle PTQ = 2 (90^{\circ} - \theta)$	1/2
	$\angle PTQ = 2 \angle OPQ [using (1)]$	
30.	Given, $1 + \sin^2\theta = 3 \sin\theta \cos\theta$	
	Dividing both sides by $\cos^2\theta$,	
	$\frac{1}{\cos^2\theta} + \tan^2\theta = 3\tan\theta$	
	000 0	1/2
	$\sec^2\theta + \tan^2\theta = 3\tan\theta$	1/2
	$1 + \tan^2\theta + \tan^2\theta = 3\tan\theta$	1/2
	$1 + 2 \tan^2 \theta = 3 \tan \theta$	1/2
	$2\tan^2\theta - 3\tan\theta + 1 = 0$	'2
1	If $\tan \theta = x$, then the equation becomes $2x^2 - 3x + 1 = 0$	

The	e Learning App						
	$\Rightarrow (x-1)(2x-1) = 0 \text{ x} = 1 \text{ or } \frac{1}{2}$						
	$\tan \theta = 1 \text{ or } \frac{1}{2}$				1		
31.		I			_		
	Length [in mm]	Number of leaves (f)	CI	Mid x	d	fd	
	118 – 126	3	117.5- 126.5	122	-27	-81	
	127 - 135	5	126.5-135.5	131	-18	-90	
	136 - 144	9	135.5- 144.5	140	-9	-81	
	145 - 153	12	144.5 - 153.5	a = 149	0	0	
	154 – 162	5	153.5 - 162.5	158	9	45	2
	163 - 171	4	162.5 – 171.5	167	18	72	1/2
	172 - 180	2	171.5 – 180.5	176	27	54	1/2
		Mean	$= a + \frac{\sum f d}{\sum f} = 149 +$	+ $\frac{-81}{40}$			
			= 149 – 2.025 = 1				
	Average length	of the leaves	= 146.975 SECTI	ON D	<u> </u>		
		Section D	consists of 4 qu	uestions of 5 r	narks each		
32.	Let the speed of the stream be x km/h. The speed of the boat upstream = $(18 - x)$ km/h and the speed of the boat downstream = $(18 + x)$ km/h. The time taken to go upstream = $\frac{distance}{dt} = \frac{24}{100}$ hours			1			
	the time taken to go downstream = $\frac{distance}{speed} = \frac{24}{18+x} \text{ hours}$ According to the question,					1	
	$\frac{24}{18-x} - \frac{24}{18+x} = 1$					1	
	$24(18+x)-24(18-x)=(18-x)(18+x)$ $x^2+48x-324=0$ $x=6 \text{ or } -54$ Since x is the speed of the stream, it cannot be negative. Therefore, $x=6$ gives the speed of the stream = 6 km/h.						1
	[or]				1		
	Let the time taken by the smaller pipe to fill the tank = x hr. Time taken by the larger pipe = $(x - 10)$ hr				1/2		
	Part of t	he tank filled	by smaller pipe i	\boldsymbol{x}			
			oy larger pipe in 1	x-10			1
	The tank	k can be filled	in $9\frac{3}{8} = \frac{75}{8}$ hour	s by both the p	oipes together.		1/2
	Part of t	he tank filled	by both the pipes	$\sin 1 \text{ hour} = \frac{8}{7!}$	-		1/2

	Therefore, $\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$ $8x^2 - 230x + 750 = 0$	1/2
	$x = 25, \frac{30}{8}$	1
	Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by	1/2
	the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe and the larger pipe will be 25 and 25 – 10 =15 hours, respectively.	1/2
33.	(a) Statement – ½ Given and To Prove – ½	
	Figure and Construction ½ Proof – 1 ½ A	3
	[b] Draw DG BE In \triangle ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]	1/2
	CF = FD [F is the midpoint of DC](i)	1/2
	In \triangle CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem] $GE = CE(ii)$	1/2
	∠CEF = ∠CFE [Given] CF = CE [Sides opposite to equal angles](iii) From (ii) & (iii) CF = GE(iv) From (i) & (iv) GE = FD ∴ $\frac{AB}{BD} = \frac{AE}{GE} \Rightarrow \frac{AB}{BD} = \frac{AE}{FD}$	1/2
34.		
	Length of the pond, $l = 50m$, width of the pond, $b = 44m$ Water level is to rise by, $h = 21 \text{ cm} = \frac{21}{100} \text{ m}$	
	100	1
	Volume of water in the pond = $lbh = 50 \times 44 \times \frac{21}{100} \text{ m}^3 = 462 \text{ m}^3$ Diameter of the pipe = 14 cm	*
	Radius of the pipe, $r = 7cm = \frac{7}{100}m$	
	Area of cross-section of pipe = πr^2	1
	$= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$	1 1/2
	Rate at which the water is flowing through the pipe, $h = 15km/h = 15000 m/h$ Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water coming out of pipe	1/2
	$= \left(\frac{154}{10000} \times 15000\right) m^3$	1
	Time required to fill the pond = $\frac{Volume \ of \ the \ pond}{Volume \ of \ water \ flowing \ in \ 1 \ hour}$	1
	$= \frac{462 \times 10000}{154 \times 15000} = 2 \text{ hours}$	
	Speed of water if the rise in water level is to be attained in 1 hour = 30km/h	
	[or]	

Radius of the cylindrical tent (r) = 14 m

Total height of the tent = 13.5 m

Height of the cylinder = 3 m

Height of the Conical part = 10.5 m

Slant height of the cone (*l*) = $\sqrt{h^2 + r^2}$

$$=\sqrt{(10.5)^2+(14)^2}$$

$$= \sqrt{110.25 + 196}$$
$$= \sqrt{306.25} = 17.5 \text{ m}$$

Curved surface area of cylindrical portion

$$= 2\pi rh$$

$$= 2x \frac{22}{7} \times 14 \times 3$$

$$= 264 \text{ m}^2$$

Curved surface area of conical portion

$$=\pi rl$$

= $\frac{22}{7} \times 14 \times 17.5$
= 770 m²

Total curved surface area = $264 \text{ m}^2 + 770 \text{ m}^2 = 1034 \text{ m}^2$ Provision for stitching and wastage $26 \, m^2$

Area of canvas to be purchased $= 1060 \text{ m}^2$

Cost of canvas = Rate × Surface area

$$= 500 \times 1060 =$$
₹ 5,30,000/-

35.

		L W
Marks obtained	Number of students	Cumulative frequency
20 – 30	р	p
30 - 40	15	p + 15
40 – 50	25	p + 40
50 – 60	20	p + 60
60 – 70	q	p + q + 60
70 – 80	8	p + q + 68
80 - 90	10	p + q + 78
	90	

$$p + q + 78 = 90$$

$$p + q = 12$$

$$Median = (l) + \frac{\frac{n}{2} - cf}{f} \cdot h$$

$$50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$$

$$\frac{45 - (p + 40)}{20} \cdot 10 = 0$$

$$P = 5$$

$$5 + q = 12$$

$$d = 7$$
Mode = $l + \frac{f1-f0}{2f1-f0-f2}$. h

1

1

1/2

1/2

1

1/2

1/2

1/2

1/2

1/2

1

	25—15			
	$=40+\frac{25-15}{2(25)-15-20}.10$			
	$= 40 + \frac{100}{15} = 40 + 6.67 = 46.67$			
	SECTION E			
36.	(i) Number of throws during camp. a = 40; d = 12	1		
	$t_{11} = a + 10d$			
	$=40+10\times12$			
	= 160 throws	1.		
	(ii) $a = 7.56 \text{ m}; d = 9 \text{cm} = 0.09 \text{ m}$	1/2		
	n = 6 weeks	1/ ₂ 1/ ₂		
	$t_n = a + (n-1) d$ = 7.56 + 6(0.09)	72		
	= 7.56 + 0(0.07) = $7.56 + 0.54$	1/2		
	Sanjitha's throw distance at the end of 6 weeks = 8.1 m	/2		
	(or)			
	a = 7.56 m; d = 9 cm = 0.09 m	1/2		
	$t_n = 11.16 \text{ m}$	1/2		
	$t_n = a + (n-1) d$			
	11.16 = 7.56 + (n-1)(0.09)	1/2		
	3.6 - (n-1)(0.09)			
	$n-1 = \frac{3.6}{0.09} = 40$			
	n = 41	1/2		
	Sanjitha's will be able to throw 11.16 m in 41 weeks.			
	(iii) a = 40; d = 12; n = 15			
	$S_n = \frac{n}{2} [2a + (n-1) d]$	1/2		
	$S_n = \frac{15}{2} [2(40) + (15-1)(12)]$			
	$=\frac{15}{2}[80+168]$			
	L	1/2		
	$=\frac{15}{2}$ [248] =1860 throws	72		
37.	(i) Let D be (a,b), then			
	Mid point of AC = Midpoint of BD			
	$(1+6 \ 2+6) - (4+a \ 3+b)$	1/2		
	$\left(\frac{1+6}{2}, \frac{2+6}{2}\right) = \left(\frac{4+a}{2}, \frac{3+b}{2}\right)$			
	4 + a = 7 $3 + b = 8$			
	a = 3 $b = 5$			
	Central midfielder is at (3,5)	1/2		

	(ii) GH = $\sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$	1/2
	$GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$	1/2
	$HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$	1/2
	$GK + HK = GH \Rightarrow G,H \& K$ lie on a same straight line	
	[or]	
	$CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$	1/2
	$CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$	1/2
	Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1)	
	Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$	1/2
	\cdot	1/2
	C is NOT the mid-point of IJ	
	(iii) A,B and E lie on the same straight line and B is equidistant from A and E	
	\Rightarrow B is the mid-point of AE	1,
	$\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$	1/ ₂ 1/ ₂
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$ 1 + $a = 4 \cdot a = 3$ 4+h = -6: h = -10 F is (3-10)	72
38.	(i) $\tan 45^\circ = \frac{80}{3} \Rightarrow CR = 80m$	1
		1/2
	(ii) $\tan 30^{\circ} = \frac{30}{CE}$	1/2
	$\frac{1}{2} = \frac{1}{2} = \frac{80}{2}$	1/2
	$\rightarrow \frac{1}{\sqrt{3}} - \frac{1}{CE}$	1/2
	$\Rightarrow CE = 80\sqrt{3}$	
	Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3}$ – $80 = 80(\sqrt{3}$ -1) m	1/2
	(or)	1/2
		/ -
	$\tan 60^{\circ} = \frac{80}{CG}$	
	$\Rightarrow \sqrt{3} = \frac{80}{CG}$	1/2
		1/2
	\Rightarrow CG = $\frac{80}{\sqrt{3}}$	
	$\Rightarrow CG = \frac{80}{\sqrt{2}}$	
	Distance the ball travelled after hitting the tree =FA=GB = CB -CG	
	GB = $80 - \frac{80}{\sqrt{3}} = 80 \left(1 - \frac{1}{\sqrt{3}}\right) \text{ m}$	
	(iii) Smood of the hind Distance $= 20(\sqrt{3} + 1)$	1/2
	(iii) Speed of the bird = $\frac{Distance}{Time\ taken} = \frac{20(\sqrt{3}+1)}{2}$ m/sec	
	$= \frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$	1/2
	2	