MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $f(x)+f(\pi-x)=\pi^{2}$ then $\int_{0}^{\pi} f(x) \sin x d x$
(1) π^{2}
(2) $\frac{\pi^{2}}{4}$
(3) $2 \pi^{2}$
(4) $\frac{\pi^{2}}{8}$

Answer (1)

Sol. $I=\int_{0}^{\pi} f(x) \sin x d x$
$I=\int_{0}^{\pi} f(\pi-x) \sin x d x$
$2 I=\int_{0}^{\pi}(\sin x)(f(x)+f(\pi-x)) d x$
$2 I=\pi^{2} \int_{0}^{\pi} \sin x d x$
$2 I=2 \pi^{2} \int_{0}^{\frac{\pi}{2}} \sin x d x$

$$
I=\pi^{2}(-\cos x)_{0}^{\frac{\pi}{2}}
$$

$$
=\pi^{2}
$$

2. The system of the equations
$x+y+z=6$
$x+2 y+\alpha z=5$ has
$x+2 y+6 z=\beta$
(1) Infinitely many solution for $\alpha=6, \beta=3$
(2) Infinitely many solution for $\alpha=6, \beta=5$
(3) Unique solution for $\alpha=6, \beta=5$
(4) No solution for $\alpha=6, \beta=5$

Answer (2)

Sol. Let $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & \alpha \\ 1 & 2 & 6\end{array}\right|=6-\alpha$
\therefore for $\alpha \neq 6$ system has unique solution
Now, when $\alpha=6$
$\Delta_{1}=\left|\begin{array}{lll}6 & 1 & 1 \\ 5 & 2 & 6 \\ \beta & 2 & 6\end{array}\right|=0-(30-6 \beta)+(10-2 \beta)$

$$
=4(\beta-5)
$$

$\Delta_{2}=\left|\begin{array}{lll}1 & 6 & 2 \\ 1 & 5 & 6 \\ 1 & \beta & 6\end{array}\right|=-4(\beta-5)$
$\Delta_{3}=\left|\begin{array}{lll}1 & 1 & 6 \\ 1 & 2 & 5 \\ 1 & 2 & \beta\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 6 \\ 0 & 1 & -1 \\ 0 & 1 & \beta-6\end{array}\right|=\beta-5$
Clearly at $\beta=5, \Delta_{i}=0$ for $i=1,2,3$
\therefore at $\alpha=6, \beta=5$ system has infinite solutions.
3. Let statement $1:(2002)^{2023}-(1919)^{2002}$ is divisible by 8 .
Statement 2 : $13.13^{n}-12 n-13$ is divisible by 144 $\forall n \in N$, then
(1) Statement-1 and statement-2 both are true
(2) Only statement-1 is true
(3) Only statement-2 is true
(4) Neither statement-1 nor statement-2 are true

Answer (3)

Sol. $\because \quad(2002)^{2023}=8 \mathrm{~m}$
$\therefore \quad(2002)^{2023}$ is divisible by 8 and (1919) ${ }^{2002}$ is not divisible by 8
$\therefore \quad(2002)^{2023}-(1919)^{2002}$ is not divisible by 8 .
Now

$$
\text { 13.(13) } \begin{aligned}
n & -12 n-13 \\
& =13(1+12)^{n}-12 n-13 \\
& =13\left[1+12 n+n_{C_{2}} 12^{2}+--\right]-12 n-13 \\
& =144 n+144 n_{C_{2}}+-- \\
& =144\left[n+n_{C_{2}}+--\right] \\
& =144 K
\end{aligned}
$$

\therefore Statement-2 is correct
4. If the coefficient of x^{7} in $\left(\alpha x^{2}+\frac{1}{2 \beta x}\right)^{11}$ and x^{-7} in $\left(x+\frac{1}{3 \beta x^{2}}\right)^{11}$ are equal then
(1) $\alpha^{6} \beta=\frac{2^{5}}{3^{6}}$
(2) $\alpha^{6} \beta=\frac{2^{6}}{3^{5}}$
(3) $\alpha \beta^{6}=\frac{2^{5}}{3^{6}}$
(4) $\alpha \beta^{6}=\frac{2^{6}}{3^{5}}$

Answer (1)

Sol. Coefficient of x^{7} in $\left(\alpha x^{2}+\frac{1}{2 \beta x}\right)^{11}$
$T_{r+1}={ }^{11} C_{r}\left(\alpha x^{2}\right)^{11-r}\left(\frac{1}{2 \beta x}\right)^{r}$
Now, $22-2 r-r=7$
$r=5$
Coeff. $={ }^{11} C_{5} \frac{\alpha^{6}}{(2 \beta)^{5}}$
Coeff. of x^{-7} in $\left(x+\frac{1}{3 \beta x^{2}}\right)^{11}$ will be, if $r=6$ is $\frac{{ }^{11} C_{6}}{3^{6} \beta^{6}}$
${ }^{11} C_{5} \frac{\alpha^{6}}{2^{5} \beta^{5}}=\frac{{ }^{11} C_{5}}{3^{6} \beta^{6}}$
$\alpha^{6} \beta=\frac{2^{5}}{3^{6}}$
5. If $(21)^{18}+20 \cdot(21)^{17}+(20)^{2} \cdot(21)^{16}+$ \qquad
$=k\left(21^{19}-20^{19}\right)$ then $k=$
(1) $\frac{21}{20}$
(2) 1
(3) $\frac{21}{20}$
(4) $\frac{20}{21}$

Answer (2)

Sol. $a=(21)^{18}, r=\frac{20}{21}, n=19$

$$
\begin{aligned}
S & =(21)^{18} \frac{\left(1-\left(\frac{20}{21}\right)^{19}\right)}{1-\frac{20}{21}} \\
\Rightarrow & \frac{(21)^{19}}{(21)^{19}}\left((21)^{19}-(20)^{19}\right) \\
& =(21)^{19}-(20)^{19}
\end{aligned}
$$

6. If $1^{2}-2^{2}+3^{2}-4^{2}+\ldots-(2022)^{2}+(2023)^{2}=m^{2} n$, where $m, n \in N$ and $m>19$ then $n^{2}-m$ is
(1) 615
(2) 562
(3) 812
(4) 264

Answer (1)
Sol. $1^{2}-2^{2}+3^{2}-4^{2}+\ldots .(2021)^{2}-(2022)^{2}+(2023)^{2}$
$=\underbrace{-3-7-11 \ldots \ldots .}_{1011 \text { terms }}+(2023)^{2}$
$=-\frac{1011}{2}(6+(1010) 4)+(2023)^{2}$
$=-1011(3+2020)+(2023)^{2}$
$=(2023)(-1011)+(2023)^{2}$
$=(2023)(2023-1011)$
$=2023(1012)$
$=(17)^{2} \cdot 7\left(2^{2} \cdot 253\right)=(34)^{2}(1771)$
$=m=34, n=1771$
$\therefore \mathrm{n}-m^{2}$
$=1771-1156$
$=615$
7. If $a \neq \pm b$ and are purely real, $z \in$ complex number, $\operatorname{Re}\left(a z^{2}+b z\right)=a$ and $\operatorname{Re}\left(b z^{2}+a z\right)=b$ then number of value of z possible is
(1) 0
(2) 1
(3) 2
(4) 3

Answer (1)

Sol. $a\left(x^{2}-y^{2}\right)+b x=a$
$b\left(x^{2}-y^{2}\right)+a x=b$
(i) - (ii)
$(a-b)\left(x^{2}-y^{2}\right)+(b-a) x=a-b \quad(a \neq b)$
$\Rightarrow x^{2}-y^{2}-x=1$
(i) + (ii)
$(a+b)\left(x^{2}-y^{2}\right)+x(a+b)=a+b \quad(a \neq-b)$
$\Rightarrow x^{2}-y^{2}+x=1$
$\Rightarrow x=0$
$\Rightarrow y^{2}=-1 \quad$ (not possible $\because y \in R$)
$\therefore \quad$ No complex number possible.
8. Two tangents are drawn from point $R\left(\frac{9}{2},-3\right)$ intersect the circle $x^{2}+y^{2}-2 x+y=5$ at P and Q then the area of $\triangle P Q R$ is
(1) $\frac{1710}{290}$
(2) $\frac{1715}{296}$
(3) $\frac{296}{1715}$
(4) $\frac{290}{1710}$

Answer (2)

Sol.

Area $=\frac{R L^{3}}{R^{2}+L^{2}}$
$L=\frac{7}{2}$
Area $=\frac{\frac{5}{2} \times\left(\frac{7}{2}\right)^{3}}{\left(\frac{5}{2}\right)^{2}+\left(\frac{7}{2}\right)^{2}}$

$$
=\frac{\frac{1715}{16}}{\frac{25+49}{4}}=\frac{1715 \times 4}{16 \times 74}=\frac{1715}{296}
$$

9. Equation of plane passing through intersection of $P_{1}: \vec{r}(\hat{i}+\hat{j}+\hat{k})=6$ and $\quad P_{2}: \vec{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and $(0,2,-2)$ is P. Then square of distance of (12, $12,18)$ from P is
(1) 310
(2) 1240
(3) 155
(4) 620

Answer (4)

Sol. $P_{1}+\lambda P_{2}=0$
$(x+y+z-6)+\lambda(2 x+3 y+4 z+5)=0$
$(1+2 \lambda) x+(1+3 \lambda) y+(1+4 \lambda) z+5 \lambda-6=0$
Passing through ($0,2,-2$)
$\Rightarrow \lambda=2$
$\therefore \quad$ Plane : $5 x+7 y+9 z=-4$

$$
\begin{aligned}
\text { Distance } & =\left|\frac{5(12)+7(12)+9(18)+4}{\sqrt{5^{2}+7^{2}+9^{2}}}\right|^{2} \\
& =620
\end{aligned}
$$

10. If V is volume of parallelopiped whose three coterminous edges are $\vec{a}, \vec{b}, \vec{c}$, then volume of a parallelopiped whose coterminous edges are $\vec{a}, \vec{b}+\vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ is
(1) 6 V
(2) V
(3) 2 V
(4) $3 V$

Answer (2)
Sol. $\left[\begin{array}{lll}\vec{a} & \vec{b}+\vec{c} & \vec{a}+2 \vec{b}+3 \vec{c}\end{array}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 2 & 3
\end{array}\right|\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \\
& =V
\end{aligned}
$$

11. $S_{1}:(p \Rightarrow q) \vee(\sim p \wedge q)$ is a tautology
$S_{2}:(q \Rightarrow p) \Rightarrow(\sim p \wedge q)$ is a contradiction
(1) Both S_{1} and S_{2} are true
(2) Neither S_{1} Nor S_{2} are true
(3) Only S_{1} are true
(4) Only S_{2} are true

Answer (2)
Sol. $(p \Rightarrow q) \vee(\sim p \wedge q)$

$$
\begin{aligned}
& \equiv(\sim p \vee q) \vee \sim p \wedge q \\
& \equiv \sim p \vee q \vee \sim p \wedge q \\
& \equiv \sim p \vee q
\end{aligned}
$$

Which is not a tautology
$(q \Rightarrow p) \Rightarrow(\sim p \wedge q)$
$\equiv(\sim q \vee p) \Rightarrow(\sim p \wedge q)$
$\equiv \sim(\sim q \vee p) \vee(\sim p \wedge q)$
$\equiv(q \wedge(\sim p) \vee(\sim p \wedge q)$
$\equiv \sim p \wedge q$
Which is not a contradiction.
12. $(1+\ln x) \frac{d x}{d y}+x \ln x=e^{y}$

Solution of this differential equation satisfies (1, 90) and ($\alpha, 92$) then α^{α} is
(1) $\frac{e^{90}}{90}$
(2) $\frac{e^{92}-e^{90}}{45}$
(3) $e^{\left(\frac{e^{92}-e^{90}}{92}\right)}$
(4) $e^{92}-e^{90}$

Answer (3)

Sol. $(1+\ln x) d x+x \ln x d y=e^{y} d y$

$$
\begin{aligned}
& d(y \cdot x \ln x)=d\left(e^{y}\right) \\
& \Rightarrow \quad x y \ln x=e^{y}+C
\end{aligned}
$$

Through $(1,90) \Rightarrow C=-e^{90}$
$x y \ln x=e^{y}-e^{90}$
$\therefore \quad \alpha .92 \ln \alpha=e^{92}-e^{90}$
$\ln \alpha^{\alpha}=\frac{e^{92}-e^{90}}{92}$
$\alpha^{\alpha}=e^{\left(\frac{e^{92}-e^{90}}{92}\right)}$
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. The rank of the word "PUBLIC" is

Answer (198)

Sol. $\begin{array}{ccccccc} & & 5 & 6 & 1 & 4 & 3 \\ & P & U & B & L & I & C \\ & 4 & 4 & 0 & 2 & 1 & 0 \\ & 5! & 4! & 3! & 2! & 1! & 0!\end{array}$
$\therefore \quad$ Rank $=(1 \times 1!+2 \times 2!+4 \times 4!+4 \times 5!)+1$
$=(1+4+96+480)+1$
$=582$
22. The area enclosed by $y=|x-1|+|x-2|$ and $y=3$ is

Answer (04)

Sol.

$=\frac{1}{2}[1+3] \times 2$
$=4$
23. If the number of all 4 letter words with 2 vowels and 2 consonants from the word UNIVERSE is n, then $n-500$ is

Answer (4)

Sol. Vowels \rightarrow I, U, E, E
Consonants \rightarrow N, V, R, S
$\begin{array}{ll}\text { (I) } 2 \text { Vowels some } & \text { (II) } 2 \text { Vowels different }\end{array}$

$$
4 C_{2} \times \frac{4!}{2!}=72
$$

$$
3 C_{2} \times 4 C_{2} \times 4!=432
$$

$$
72+432=504
$$

24. Three dice are thrown. Then the probability that no outcomes is similar is $\frac{p}{q}$ then $q-p$ is (where p and q are co-prime)

Answer (04)

Sol. $P(E)=\frac{6 \times 5 \times 4}{6 \times 6 \times 6}$

$$
=\frac{20}{36}=\frac{5}{9}=\frac{p}{q}
$$

$q-p=9-5=4$
25. $P^{2}=I-P$
$P^{\alpha}+P^{\beta}=\gamma l-2 q p$
$P^{\alpha}-P^{\beta}=\delta I-13 P$
Then find the value of $\alpha+\beta+\gamma-\delta$
Answer (24)

Sol. $P^{\beta}=P-P^{2}$

Similarly
$P^{6}=5 I-8 P$
and $P^{8}=13 /-21 P$
$P^{6}+P^{6}=18 I-29 P$

$$
\begin{aligned}
& =P-(I-P)=2 P-I \\
& P^{4}=2 P^{2}-P \\
& =2(I-P)-P=2 I-3 P
\end{aligned}
$$

$P^{6}-P^{6}=81-13 P$
$\alpha=8, \beta=6, \gamma=18, \delta=8$
$\alpha+\beta+\gamma-\delta=8+6+18-8=24$
26.
27.
28.
29.
30.

