

EXERCISE 6.2 PAGE NO: 127

Solve the following inequalities graphically in two-dimensional plane:

10.
$$x + y < 5$$

Solution:

Given x + y < 5

Consider

X	0	5
У	5	0

Now, draw a dotted line x + y = 5 in the graph ($\because x + y = 5$ is excluded in the given question)

Now, consider x + y < 5

Select a point (0, 0)

$$\Rightarrow$$
 0 + 0 < 5

 \Rightarrow 0 < 5 (this is true)

 \therefore Solution region of the given inequality is below the line x + y = 5. (i.e., origin is included in the region)

The graph is as follows:

2. $2x + y \ge 6$

Solution:

Given $2x + y \ge 6$

Now, draw a solid line 2x + y = 6 in the graph (2x + y = 6 is included in the given question)

Now, consider $2x + y \ge 6$

Select a point (0, 0)

- \Rightarrow 2 × (0) + 0 \geq 6
- \Rightarrow 0 \geq 6 (this is false)
- \therefore Solution region of the given inequality is above the line 2x + y = 6. (away from the origin)

The graph is as follows:

 $3.3x + 4y \le 12$

Solution:

Given $3x + 4y \le 12$

Now, draw a solid line 3x + 4y = 12 in the graph (3x + 4y = 12 is included in the given question)

Now, consider $3x + 4y \le 12$

Select a point (0, 0)

- \Rightarrow 3 × (0) + 4 × (0) \leq 12
- \Rightarrow 0 \leq 12 (this is true)
- \therefore Solution region of the given inequality is below the line 3x + 4y = 12. (i.e., origin is included in the region)

4. y + 8 ≥ 2x

Solution:

Given $y + 8 \ge 2x$

Now, draw a solid line y + 8 = 2x in the graph ($\because y + 8 = 2x$ is included in the given question)

Now, consider $y + 8 \ge 2x$

Select a point (0, 0)

- \Rightarrow (0) + 8 \geq 2 \times (0)
- \Rightarrow 0 \leq 8 (this is true)
- \therefore Solution region of the given inequality is above the line y + 8 = 2x. (i.e., origin is included in the region)

5. x - y ≤ 2

Solution:

Given $x - y \le 2$

Now, draw a solid line x - y = 2 in the graph (: x - y = 2 is included in the given question).

Now, consider $x - y \le 2$

Select a point (0, 0)

$$\Rightarrow$$
 (0) $-$ (0) \leq 2

 \Rightarrow 0 \leq 2 (this is true)

 \therefore Solution region of the given inequality is above the line x - y = 2. (i.e., origin is included in the region)

6.
$$2x - 3y > 6$$

Solution:

Given 2x - 3y > 6

Now draw a dotted line 2x - 3y = 6 in the graph ($\because 2x - 3y = 6$ is excluded in the given question)

Now Consider 2x - 3y > 6

Select a point (0, 0)

$$\Rightarrow$$
 2 × (0) – 3 × (0) > 6

 \Rightarrow 0 > 6 (this is false)

 \therefore Solution region of the given inequality is below the line 2x - 3y > 6. (Away from the origin)

$$7. - 3x + 2y \ge -6$$

Solution:

Given
$$-3x + 2y \ge -6$$

Now, draw a solid line -3x + 2y = -6 in the graph (:-3x + 2y = -6 is included in the given question).

Now, consider $-3x + 2y \ge -6$

Select a point (0, 0)

$$\Rightarrow$$
 -3 × (0) + 2 × (0) \geq -6

$$\Rightarrow$$
 0 \geq -6 (this is true)

∴ Solution region of the given inequality is above the line $-3x + 2y \ge -6$. (i.e., origin is included in the region)

8. y - 5x < 30

Solution:

Given y - 5x < 30

Now, draw a dotted line 3y - 5x = 30 in the graph (:3y - 5x = 30 is excluded in the given question)

Now, consider 3y - 5x < 30

Select a point (0, 0)

$$\Rightarrow$$
 3 × (0) – 5 × (0) < 30

$$\Rightarrow$$
 0 < 30 (this is true)

 \therefore Solution region of the given inequality is below the line 3y - 5x < 30. (i.e., origin is included in the region)

9. y < - 2

Solution:

Given y < -2

Now, draw a dotted line y = -2 in the graph (: y = -2 is excluded in the given question)

Now, consider y < -2

Select a point (0, 0)

 \Rightarrow 0 < -2 (this is false)

 \therefore Solution region of the given inequality is below the line y < -2. (i.e., away from the origin)

10. x > -3

Solution:

Given x > -3

Now, draw a dotted line x = -3 in the graph ($\because x = -3$ is excluded in the given question)

Now, consider x > -3

Select a point (0, 0)

 $\Rightarrow 0 > -3$

 \Rightarrow 0 > -3 (this is true)

 \therefore Solution region of the given inequality is right to the line x > -3. (i.e., origin is included in the region)

