1. Classify the following as motion along a straight line, circular or oscillatory motion:
(i) Motion of your hands while running.
(ii) Motion of a horse pulling a cart on a straight road.
(iii) Motion of a child in a merry-go-round.
(iv) Motion of a child on a see-saw.
(v) Motion of the hammer of an electric bell.
(vi) Motion of a train on a straight bridge.

Solution:

i) Oscillatory
ii) Motion along a straight line
iii) Circular motion
iv) Oscillatory motion
v) Oscillatory motion
vi) Motion along a straight line.
2. Which of the following are not correct?
(i) The basic unit of time is second.
(ii) Every object moves with a constant speed.
(iii) Distances between two cities are measured in kilometres.
(iv) The time period of a given pendulum is constant.
(v) The speed of a train is expressed in m / h.

Solution:

Incorrect statements are:
(ii) Every object moves with a constant speed.
(iv) The time period of a given pendulum is constant.
(v) The speed of a train is expressed in m / h.
3. A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?

Solution:

Number of oscillations $=20$
Total time taken to complete 20 oscillations $=32 \mathrm{~s}$

Time period $=$ Total time taken
Number of oscillations
$=\frac{32}{20}=1.6 \mathrm{~s}$
4. The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.

Solution:

Distance between two stations $=240 \mathrm{kms}$
Total time take $=4 \mathrm{hrs} / 240$ minutes

$$
\begin{aligned}
\text { Speed } & =\frac{\text { Distance }}{\text { Time }} \\
& =\frac{240}{4}
\end{aligned}
$$

$=60 \mathrm{~km} / \mathrm{h}$
5. The odometer of a car reads 57321.0 km when the clock shows the time $08: 30 \mathrm{AM}$. What is the distance moved by the car, if at $08: 50 \mathrm{AM}$, the odometer reading has changed to 57336.0 km ? Calculate the speed of the car in $\mathbf{k m} / \mathrm{min}$ during this time. Express the speed in km / h also.

Solution:

Initial reading of the odometer $=57321.0$
Final reading of the odometer $=57336.0$
Distance covered by the car $=$ Final reading of the odometer - Initial reading of the odometer
$=57336.0-57321.0=15 \mathrm{kms}$
Starting time of car is 8:30 and it stops at 8:50
Hence, time taken by car $=20 \mathrm{mins}$

```
    Speed = Distance
        Time
        =15
        20
=0.75 km/min
    20min}=\frac{1}{60}\times2
        = 1 h
    Speed = Distance covered }=\frac{15}{\mathrm{ Time take }}=\frac{1/3}{1/3
= 45 km/h
```

6. Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $\mathbf{2} \mathbf{~ m} / \mathrm{s}$, calculate the distance between her house and the school.

Solution:

Time taken by Salma to reach her school by bicycle $=15$ mins $=15 \times 60=90 \mathrm{~s}$
Speed of Salma's bicycle $=2 \mathrm{~m} / \mathrm{s}$

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}
$$

Distance covered $=$ speed x time taken
$=2 \times 900=1800 \mathrm{~m}$
$1000 \mathrm{~m}=1 \mathrm{~km}$
$1800 \mathrm{~m}=\frac{1}{1000} \times 1800$
$=1.8 \mathrm{kms}$
7. Show the shape of the distance-time graph for the motion in the following cases:
(i) A car moving with a constant speed.
(ii) A car parked on a side road.

Solution:

8. Which of the following relations is correct?
(i) Speed = Distance \times Time
(ii) Speed = Distance/Time
(iii) Speed $=$ Time/Distance
(iv) Speed = 1/Distance \mathbf{x} Time

Solution:

Answer is (ii) Speed = Distance/Time
9. The basic unit of speed is:
(i) $\mathrm{km} / \mathrm{min}$
(ii) $\mathrm{m} / \mathrm{min}$
(iii) km / h
(iv) m / s

Solution:

Answer is (iv) m/s
10. A car moves with a speed of $40 \mathrm{~km} / \mathrm{h}$ for 15 minutes and then with a speed of $60 \mathrm{~km} / \mathrm{h}$ for the next 15 minutes. The total distance covered by the car is:
(i) 100 km (ii) $\mathbf{2 5} \mathbf{~ k m}$ (iii) $\mathbf{1 5} \mathbf{~ k m}$ (iv) 10 km

Solution:

The answer is (ii) 25 km
Calculation:
When the speed of the car is $40 \mathrm{~km} / \mathrm{h}$
Time taken $=15 \mathrm{~min}=15 / 60=0.25 \mathrm{~h}$

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}
$$

Distance covered $d_{1}=$ speed x time taken
$=40 \times 0.25=10 \mathrm{kms}$
When the speed of the car is $60 \mathrm{~km} / \mathrm{h}$

$$
\text { Speed }=\frac{\text { Distance covered }}{\text { Time taken }}
$$

Distance covered $\mathrm{d}_{2}=$ speed x time taken
$=60 \times 0.25=15 \mathrm{kms}$
Total distance covered by the car $=\mathrm{d}_{1}+\mathrm{d}_{2}$
$=10+15$
$=25 \mathrm{kms}$
11. Suppose the two photographs, shown in Fig. 13.1 and Fig. 13.2, had been taken at an interval of 10 seconds.

If a distance of 100 metres is shown by 1 cm in these photographs, calculate the speed of the fastest car.

Fig. 13.1 Vehtcles movtng th the same direction on a road

Fig. 13.2 Posttion of vehtcles shown in
Fig. 13.1 after some time

Solution:

The distance covered by the blue car (as evident from the photograph) from one horizontal white strip to another, which is measured by scale is 1.2 cm .

It is given that 1 cm is equivalent to 100 m .
Therefore, 1.2 cm is equivalent to 120 m .
Distance travelled by the car $=120 \mathrm{~m}$
Time taken to cover this distance $=$ Time interval between the two photographs $=10 \mathrm{~s}$

```
Speed = Distance covered
    Time taken
= 120/10
```

$=12 \mathrm{~m} / \mathrm{s}$
12. Fig. 13.15 shows the distance-time graph for the motion of two vehicles A and B. Which one of them is moving faster?

Fig. 13.15 Distance-ttme graph for the motton of two cars

Solution:

Vehicle A is moving faster than vehicle B.
13. Which of the following distance-time graphs shows a truck moving with speed which is not constant?

Solution:

Answer is iii)

