EXERCISE 18.1

1. Construct a quadrilateral ABCD in which $\mathrm{AB}=4.4 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=6.4 \mathrm{~cm}, \mathrm{DA}=3.8 \mathrm{~cm}$ and $\mathrm{BD}=6.6$ cm.

Solution:

The given details are $\mathrm{AB}=4.4 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=6.4 \mathrm{~cm}, \mathrm{DA}=3.8 \mathrm{~cm}$ and $\mathrm{BD}=6.6 \mathrm{~cm}$.
Divide the quadrilateral into two triangles, i.e., $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BCD}$
Steps to construct a quadrilateral:
Step 1- By using SSS congruency rule, Draw line BD of length 6.6 cm .
Step 2- Cut an arc with B as the centre and radius $B C=4 \mathrm{~cm}$. Do the same by taking D as centre and radius $C D=6.4$ cm.

Step 3- Now join the intersection point from B and D and label it as C.
Step 4- Now for vertex A, cut an arc by taking B as the centre and radius BA $=4.4 \mathrm{~cm}$. Do the same by taking D as centre and radius $\mathrm{DA}=3.8 \mathrm{~cm}$.

Step 5- Join the intersection point from B and D and label it as A.

2. Construct a quadrilateral ABCD in which $\mathrm{AB}=\mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{DA}=6.3 \mathrm{~cm}, \mathrm{AC}=9.4 \mathrm{~cm}$ Measure BD.

Solution:

The given details are $\mathrm{AB}=\mathrm{BC}=5.5 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{DA}=6.3 \mathrm{~cm}, \mathrm{AC}=9.4 \mathrm{~cm}$ Measure BD .
Steps to construct a quadrilateral:
Step 1- Draw a line segment $\mathrm{AB}=5.5 \mathrm{~cm}$
Step 2- With B as centre and radius $\mathrm{BC}=5.5 \mathrm{~cm}$ cut an arc. Mark that point as C .

Step 3- With A as centre and radius $\mathrm{AC}=9.4 \mathrm{~cm}$ cut an arc to intersect at point C .
Step 4- With C as centre and radius $C D=4 \mathrm{~cm}$ cut an arc. Mark that point as D.
Step 5- With A as centre and radius $\mathrm{AD}=6.3 \mathrm{~cm}$ cut an arc to intersect at point D .
Step 6- Now join BC, CD and AD
Measure of BD is 5.1 cm .

3. Construct a quadrilateral $X Y Z W$ in which $X Y=5 \mathrm{~cm}, Y Z=6 \mathrm{~cm}, Z W=7 \mathrm{~cm}, W X=3 \mathrm{~cm}$ and $X Z=9 \mathrm{~cm}$.

Solution:

The given details are $X Y=5 \mathrm{~cm}, Y Z=6 \mathrm{~cm}, Z W=7 \mathrm{~cm}, \mathrm{WX}=3 \mathrm{~cm}$ and $X Z=9 \mathrm{~cm}$.
Steps to construct a quadrilateral:
Step 1- Draw line XZ of length 9 cm .
Step 2- Cut an arc by taking X as the centre radius $\mathrm{XY}=5 \mathrm{~cm}$. Do the same by taking Z as centre and radius $\mathrm{ZY}=6 \mathrm{~cm}$.
Step 3- Now join the intersection point from X and Z and label it as Y .
Step 4- For vertex W , cut an arc by taking X as the centre and radius $\mathrm{XW}=3 \mathrm{~cm}$. Similarly, taking Z as the centre and radius $\mathrm{ZW}=7 \mathrm{~cm}$.

Step 5- Join the intersection point from X and Z and label it as W.

4. Construct a parallelogram $P Q R S$ such that $P Q=5.2 \mathrm{~cm}, P R=6.8 \mathrm{~cm}$, and $Q S=8.2 \mathrm{~cm}$.

Solution:

The given details are $\mathrm{PQ}=5.2 \mathrm{~cm}, \mathrm{PR}=6.8 \mathrm{~cm}$, and $\mathrm{QS}=8.2 \mathrm{~cm}$.
Steps to construct a parallelogram:
Step 1- Draw line QS of length 8.2 cm .
Step 2- Divide the line segment QS into half, i.e., 4.1 cm and mark that point as O. Now by taking O as centre cut an arc on both the sides of O with a radius of 3.4 cm each. And mark that points as P and R .

Step 3- cut an arc by taking Q as a centre and radius $\mathrm{QR}=5.2 \mathrm{~cm}$ to intersect with point R .
Step 4- cut an arc by taking Q as a centre and radius $\mathrm{QP}=5.2 \mathrm{~cm}$ to intersect with point P .
Step 5- Join sides PQ, PS, QR and RS.

5. Construct a rhombus with side 6 cm and one diagonal 8 cm . Measure the other diagonal.

Solution:

The given details are side 6 cm and one diagonal 8 cm .
We know all the sides of a rhombus are equal, and diagonals bisect each other.
Steps to construct a rhombus:
Step 1- Draw a line XZ of length 8 cm .
Step 2- By taking a radius of 6 cm , cut an arc by taking X as the centre. Do the same by taking Z as centre with radius of 6 cm .

Step 3- Now join the intersection point from X and Z and label it as Y .
Step 4- Now for vertex W, by taking radius of 6 cm and cut an arc by taking X as the centre. Do the same by taking Z as centre and radius of 6 cm .

Step 5- Join the intersection point from X and Z and label it as W.
Step 6- Now join XY, XW, XZ and ZY.

BYJU'S
The Learning App

6. Construct a kite ABCD in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=4.9 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$.

Solution:

The given details are $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=4.9 \mathrm{~cm}, \mathrm{AC}=7.2 \mathrm{~cm}$.
Steps to construct a kite:
Step 1- Draw line AC of length 7.2 cm .
Step 2- By taking a radius of 4 cm and cut an arc by taking A as the centre. Do the same by taking C as centre with radius of 4.9 cm .

Step 3- Now join the intersection point from A and C and label it as B.
Step 4- Now for vertex D, cut an arc by taking A as the centre. Do the same by taking C as centre with radius of 4.9 cm.

Step 5- Join the intersection point from A and C and label it as D.

7. Construct, if possible, a quadrilateral ABCD given $\mathrm{AB}=\mathbf{6} \mathrm{cm}, \mathrm{BC}=3.7 \mathrm{~cm}, \mathrm{CD}=5.7 \mathrm{~cm}, \mathrm{AD}=5.5 \mathrm{~cm}$ and $B D=6.1 \mathrm{~cm}$. Give reasons for not being able to construct it, if you cannot.

Solution:

The given details are $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=3.7 \mathrm{~cm}, \mathrm{CD}=5.7 \mathrm{~cm}, \mathrm{AD}=5.5 \mathrm{~cm}$ and $\mathrm{BD}=6.1 \mathrm{~cm}$.
Steps to construct a quadrilateral:
Step 1- Draw a line $A B$ of length 6 cm .
Step 2- With A as a centre cut an arc of radius 5.5 cm and mark that point as D.
Step 3- With B as a centre cut an arc of radius 6.1 cm to intersect with point D.
Step 4- With B as a centre cut an arc of radius 3.7 cm and mark that point as C .
Step 5- With D as a centre cut an arc of radius 5.7 cm to intersect with point C .
Step 6- Now join $\mathrm{AD}, \mathrm{BD}, \mathrm{BC}$ and DC .

8. Construct, if possible, a quadrilateral ABCD in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{CD}=3 \mathrm{~cm}, \mathrm{AD}=5.5 \mathrm{~cm}$ and $A C=11 \mathrm{~cm}$. Give reasons for not being able to construct, if you cannot. (Not possible, because in triangle $A C D, A D+C D<A C)$.

Solution:

The given details are $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}, \mathrm{CD}=3 \mathrm{~cm}, \mathrm{AD}=5.5 \mathrm{~cm}$ and $\mathrm{AC}=11 \mathrm{~cm}$.
Such a Quadrilateral cannot be constructed because, in a triangle, the sum of the length of its two sides must be greater than that of the third side.

In triangle ACD ,
$\mathrm{AD}+\mathrm{CD}=5.5+3=8.5 \mathrm{~cm}$
Given, $\mathrm{AC}=11 \mathrm{~cm}$
So, $\mathrm{AD}+\mathrm{CD}<\mathrm{AC}$ which is not possible.

BYJU'S
The Learning App
\therefore The construction is not possible

