The Learning App

EXERCISE 12.2

Question 1: Find the area of the quadrilateral ABCD in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=\mathbf{4 c m}, \mathrm{CD}=\mathbf{4 c m}, \mathrm{DA}=5 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.

Solution:

Area of the quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ADC} \ldots$. (1)
$\triangle A B C$ is a right-angled triangle, which is right-angled at B.
Area of $\triangle \mathrm{ABC}=1 / 2 \times$ Base \times Height
$=1 / 2 \times A B \times B C$
$=1 / 2 \times 3 \times 4$
$=6$
Area of $\triangle A B C=6 \mathrm{~cm}^{2}$
Now, In $\triangle C A D$,
Sides are given, apply Heron's Formula.

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Semi Perimeter, $\mathrm{s}=\frac{(a+b+c)}{2}$
Where, a, b and c are sides of a triangle

Perimeter $=2 \mathrm{~s}=\mathrm{AC}+\mathrm{CD}+\mathrm{DA}$
$2 \mathrm{~s}=5 \mathrm{~cm}+4 \mathrm{~cm}+5 \mathrm{~cm}$
$2 \mathrm{~s}=14 \mathrm{~cm}$
$\mathrm{s}=7 \mathrm{~cm}$
Area of the $\triangle C A D=\sqrt{7 \times(7-5) \times(7-4) \times(7-5)}$
$=\sqrt{7 \times 2 \times 3 \times 2}$
$=2 \sqrt{21}$
$=9.16$
Area of the $\triangle \mathrm{CAD}=9.16 \mathrm{~cm}^{2} \ldots$ (3)
Using equations (2) and (3) in (1), we get
Area of quadrilateral $\mathrm{ABCD}=(6+9.16) \mathrm{cm}^{2}$
$=15.16 \mathrm{~cm}^{2}$.
Question 2: The sides of a quadrilateral field, taken in order, are $26 \mathrm{~m}, 27 \mathrm{~m}, 7 \mathrm{~m}$, and 24 m , respectively. The angle contained by the last two sides is a right angle. Find its area.

Solution:

Here,
$\mathrm{AB}=26 \mathrm{~m}, \mathrm{BC}=27 \mathrm{~m}, \mathrm{CD}=7 \mathrm{~m}, \mathrm{DA}=24 \mathrm{~m}$
AC is the diagonal joined at A to C point.
Now, in $\triangle \mathrm{ADC}$,
From Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
$\mathrm{AC}^{2}=14^{2}+7^{2}$
$\mathrm{AC}=25$
Now, area of $\triangle \mathrm{ABC}$
All the sides are known, Apply Heron's Formula.
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Semi Perimeter, $\mathrm{s}=\frac{(a+b+c)}{2}$
Where, a, b and c are sides of a triangle

Perimeter of $\triangle \mathrm{ABC}=2 \mathrm{~s}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$
$2 \mathrm{~s}=26 \mathrm{~m}+27 \mathrm{~m}+25 \mathrm{~m}$
$\mathrm{s}=39 \mathrm{~m}$

$$
\text { Area of a triangle }=\sqrt{39 \times(39-25) \times(39-26) \times(39-27)}
$$

$=\sqrt{39 \times 14 \times 13 \times 12}$
$=\sqrt{85176}$
$=291.84$
Area of a triangle $\mathrm{ABC}=291.84 \mathrm{~m}^{2}$
Now, for the area of $\triangle \mathrm{ADC}$, (Right angle triangle)
Area $=1 / 2 \times$ Base X Height
$=1 / 2 \times 7 \times 24$
$=84$
Thus, the area of a $\triangle \mathrm{ADC}$ is $84 \mathrm{~m}^{2}$
Therefore, the area of rectangular field $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ADC}$
$=291.84 \mathrm{~m}^{2}+84 \mathrm{~m}^{2}$
$=375.8 \mathrm{~m}^{2}$
Question 3: The sides of a quadrilateral, taken in order as $5,12,14$, and 15 meters, respectively, and the angle contained by the first two sides is a right angle. Find its area.

Solution:

Here, $\mathrm{AB}=5 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}=14 \mathrm{~m}$ and $\mathrm{DA}=15 \mathrm{~m}$
Join the diagonal AC.
Now, the area of $\triangle \mathrm{ABC}=1 / 2 \times \mathrm{AB} \times \mathrm{BC}$
$=1 / 2 \times 5 \times 12=30$
The area of $\triangle A B C$ is $30 \mathrm{~m}^{2}$
In $\triangle \mathrm{ABC}$, (right triangle).
From Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{AC}^{2}=5^{2}+12^{2}$
$\mathrm{AC}^{2}=25+144=169$
or $\mathrm{AC}=13$
Now in $\triangle \mathrm{ADC}$,
All sides are known, apply Heron's Formula:

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Semi Perimeter, $\mathrm{s}=\frac{(a+b+c)}{2}$
Where, a, b and c are sides of a triangle
Perimeter of $\triangle \mathrm{ADC}=2 \mathrm{~s}=\mathrm{AD}+\mathrm{DC}+\mathrm{AC}$
$2 \mathrm{~s}=15 \mathrm{~m}+14 \mathrm{~m}+13 \mathrm{~m}$
$\mathrm{s}=21 \mathrm{~m}$

$$
\begin{aligned}
& \text { Area of } \triangle \mathrm{ADC}=\sqrt{21 \times(21-13) \times(21-14) \times(21-15)} \\
& =\sqrt{21 \times 8 \times 7 \times 6} \\
& =84 \\
& \text { Area of } \triangle \mathrm{ADC}=84 \mathrm{~m}^{2} \\
& \text { Area of quadrilateral } \mathrm{ABCD}=\text { Area of } \triangle \mathrm{ABC}+\text { Area of } \triangle \mathrm{ADC} \\
& =(30+84) \mathrm{m}^{2} \\
& =114 \mathrm{~m}^{2}
\end{aligned}
$$

Question 4: A park in the shape of a quadrilateral ABCD has $\angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=\mathbf{1 2} \mathbf{m}, \mathrm{CD}=\mathbf{5} \mathbf{m}, \mathrm{AD}=8$ m . How much area does it occupy?

Solution:

Here, $\mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}=5 \mathrm{~m}, \mathrm{DA}=8 \mathrm{~m}$.
And BD is a diagonal of ABCD .
In the right $\triangle B C D$,
From Pythagoras theorem;
$\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2}$
$\mathrm{BD}^{2}=12^{2}+5^{2}=144+25=169$
$\mathrm{BD}=13 \mathrm{~m}$
Area of $\triangle B C D=1 / 2 \times B C \times C D$
$=1 / 2 \times 12 \times 5$
$=30$
Area of $\triangle B C D=30 \mathrm{~m}^{2}$
Now, In $\triangle \mathrm{ABD}$,
All sides are known, Apply Heron's Formula:

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Semi Perimeter, $\mathrm{s}=\frac{(a+b+c)}{2}$
Where, a, b and c are sides of a triangle
Perimeter of $\triangle A B D=2 s=9 m+8 m+13 m$
$\mathrm{s}=15 \mathrm{~m}$
Area of the $\triangle \mathrm{ABD}=\sqrt{15 \times(15-9) \times(15-8) \times(15-13)}$
$=\sqrt{15 \times 6 \times 7 \times 2}$
$=6 \sqrt{35}$
$=35.49$
Area of the $\triangle \mathrm{ABD}=35.49 \mathrm{~m}^{2}$
Area of quadrilateral $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABD}+$ Area of $\triangle \mathrm{BCD}$
$=(35.496+30) \mathrm{m}^{2}$
$=65.5 \mathrm{~m}^{2}$.
Question 5: Two parallel sides of a trapezium are 60 m and 77 m and the other sides are $\mathbf{2 5} \mathrm{m}$ and 26 m . Find the area of the trapezium.

Solution:

Given: $\mathrm{AB}=77 \mathrm{~m}, \mathrm{CD}=60 \mathrm{~m}, \mathrm{BC}=26 \mathrm{~m}$ and $\mathrm{AD}=25 \mathrm{~m}$
AE and CF are diagonals.
DE and CF are two perpendiculars on AB .
Therefore, we get, $\mathrm{DC}=\mathrm{EF}=60 \mathrm{~m}$
Let's say, AE = x
Then BF $=77-(60+x)$
$\mathrm{BF}=17-\mathrm{x} \ldots$ (1)
In the right $\triangle \mathrm{ADE}$,
From Pythagoras theorem,
$\mathrm{DE}^{2}=\mathrm{AD}^{2}-\mathrm{AE}^{2}$
$\mathrm{DE}^{2}=25^{2}-\mathrm{x}^{2} \ldots$.(2)
In right $\triangle B C F$
From Pythagoras theorem,
$\mathrm{CF}^{2}=\mathrm{BC}^{2}-\mathrm{BF}^{2}$
$\mathrm{CF}^{2}=26^{2}-(17-\mathrm{x})^{2}$
[Uisng (1)]

Here, DE = CF
So, $\mathrm{DE}^{2}=\mathrm{CF}^{2}$
(2) $\Rightarrow 25^{2}-x^{2}=26^{2}-(17-x)^{2}$
$625-x^{2}=676-\left(289-34 x+x^{2}\right)$
$625-x^{2}=676-289+34 x-x^{2}$
$238=34 x$
$\mathrm{x}=7$
(2) $\Rightarrow \mathrm{DE}^{2}=25^{2}-(7)^{2}$
$\mathrm{DE}^{2}=625-49$
DE $=24$
Area of trapezium $=1 / 2 \times(60+77) \times 24=1644$
Area of trapezium is $1644 \mathrm{~m}^{2}$ (Answer)
Question 6: Find the area of a rhombus whose perimeter is 80 m and one of whose diagonal is $\mathbf{2 4} \mathrm{m}$.
Solution:

The perimeter of a rhombus $=80 \mathrm{~m}$ (given)
We know, Perimeter of a rhombus $=4 \times$ side
Let a be the side of a rhombus.
$4 \times a=80$
or $\mathrm{a}=20$
One of the diagonal, $\mathrm{AC}=24 \mathrm{~m}$ (given)
Therefore $\mathrm{OA}=1 / 2 \times \mathrm{AC}$
$\mathrm{OA}=12$
In $\triangle \mathrm{AOB}$,
Using Pythagoras theorem:
$\mathrm{OB}^{2}=\mathrm{AB}^{2}-\mathrm{OA}^{2}=20^{2}-12^{2}=400-144=256$
or $\mathrm{OB}=16$
Since the diagonal of the rhombus bisect each other at 90 degrees.
And OB = OD
Therefore, $\mathrm{BD}=2 \mathrm{OB}=2 \times 16=32 \mathrm{~m}$
Area of rhombus $=1 / 2 \times \mathrm{BD} \times \mathrm{AC}=1 / 2 \times 32 \times 24=384$
Area of rhombus $=384 \mathrm{~m}^{2}$.
Question 7: A rhombus sheet, whose perimeter is 32 m and whose diagonal is $\mathbf{1 0} \mathbf{~ m}$ long, is painted on both the sides at the rate of Rs 5 per \mathbf{m}^{2}. Find the cost of painting.

Solution:

The perimeter of a rhombus $=32 \mathrm{~m}$
We know, Perimeter of a rhombus $=4 \times$ side
$\Rightarrow 4 \times$ side $=32$
side $=\mathrm{a}=8 \mathrm{~m}$
Each side of the rhombus is 8 m
$\mathrm{AC}=10 \mathrm{~m}$ (Given)

Then, $\mathrm{OA}=1 / 2 \times \mathrm{AC}$
$\mathrm{OA}=1 / 2 \times 10$
$\mathrm{OA}=5 \mathrm{~m}$
In right triangle AOB ,
From Pythagoras theorem;
$\mathrm{OB}^{2}=\mathrm{AB}^{2}-\mathrm{OA}^{2}=8^{2}-5^{2}=64-25=39$
$\mathrm{OB}=\sqrt{ } 39 \mathrm{~m}$
And, $\mathrm{BD}=2 \times \mathrm{OB}$
$B D=2 \sqrt{39} \mathrm{~m}$
Area of the sheet $=1 / 2 \times \mathrm{BD} \times \mathrm{AC}=1 / 2 \times(2 \sqrt{ } 39 \times 10)=10 \sqrt{ } 39$
The area of the sheet is $10 \sqrt{ } 39 \mathrm{~m}^{2}$
Therefore, the cost of printing on both sides of the sheet, at the rate of Rs. 5 per m^{2}
$=$ Rs. $2 \times(10 \sqrt{ } 39 \times 5)=R s .625$.

