EXERCISE 25.1

Question 1: A coin is tossed 1000 times in the following sequence:
Head: 455, Tail: 545
Compute the probability of each event.

Solution:

The coin is tossed 1000 times, which means the number of trials is 1000 .
Let us consider the event of getting head and the event of getting tail be E and F , respectively.
Number of favourable outcomes $=$ Number of trials in which the E happens $=455$
So, Probability of $\mathrm{E}=$ (Number of favourable outcomes) / (Total number of trials)
$P(E)=455 / 1000=0.455$
Similarly,
Number of favourable outcomes $=$ Number of trials in which the F happens $=545$
Probability of the event getting a tail, $P(F)=545 / 1000=0.545$
Question 2: Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:
Two heads: 95 times
One tail: 290 times
No head: 115 times
Find the probability of occurrence of each of these events.

Solution:

We know that, Probability of any event $=($ Number of favourable outcomes $) /($ Total number of trials $)$
Total number of trials $=95+290+115=500$
Now,
$P($ Getting two heads $)=95 / 500=0.19$
$P($ Getting one tail $)=290 / 500=0.58$
$P($ Getting no head $)=115 / 500=0.23$
Question 3: Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:

Outcome	No head	One head	Two heads	Three heads
Frequency	14	38	36	12

If the three coins are simultaneously tossed again, compute the probability of:
(i) 2 heads coming up
(ii) 3 heads coming up
(iii) At least one head coming up
(iv) Getting more heads than tails
(v) Getting more tails than heads

Solution:

We know, Probability of an event $=($ Number of Favorable outcomes $) /($ Total number of outcomes $)$
In this case, the total number of outcomes $=100$.
(i) Probability of 2 Heads coming up $=36 / 100=0.36$
(ii) Probability of 3 Heads coming up $=12 / 100=0.12$
(iii) Probability of at least one head coming up $=(38+36+12) / 100=86 / 100=0.86$
(iv) Probability of getting more Heads than Tails $=(36+12) / 100=48 / 100=0.48$
(v) Probability of getting more tails than heads $=(14+38) / 100=52 / 100=0.52$

Question 4: 1500 families with 2 children were selected randomly, and the following data were recorded:

No of girls in a family	0	1	2
No of girls	211	814	475

If a family is chosen at random, compute the probability that it has:
(i) No girl (ii) 1 girl (iii) 2 girls (iv) At most one girl (v) More girls than boys

Solution:

We know, Probability of an event $=($ Number of Favorable outcomes $) /($ Total number of outcomes $)$
In this case, the total number of outcomes $=211+814+475=1500$.
(Here, total numbers of outcomes $=$ total number of families)
(i) Probability of having no girl $=211 / 1500=0.1406$
(ii) Probability of having 1 girl $=814 / 1500=0.5426$
(iii) Probability of having 2 girls $=475 / 1500=0.3166$
(iv) Probability of having at the most one girl $=(211+814) / 1500=1025 / 1500=0.6833$
(v) Probability of having more girls than boys $=475 / 1500=0.31$

Question 5: In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays. Find the probability that on a ball played:
(i) He hits a boundary (ii) He does not hit a boundary.

Solution:

Total number of balls played by a player $=30$
Number of times he hits a boundary $=6$
Number of times he does not hit a boundary $=30-6=24$
We know, Probability of an event $=($ Number of Favorable outcomes $) /($ Total number of outcomes $)$
Now,
(i) Probability (he hits boundary) $=($ Number of times he hit a boundary $) /($ Total number of balls he played $)$
$=6 / 30=1 / 5$
(ii) Probability that the batsman does not hit a boundary $=24 / 30=4 / 5$

Question 6: The percentage of marks obtained by a student in monthly unit tests is given below:

UNIT TEST	I	II	III	IV	V
PERCENTAGE OF MARK OBTAINED	69	71	73	68	76

Find the probability that the student gets
(i) More than $\mathbf{7 0 \%}$ marks
(ii) Less than $\mathbf{7 0 \%}$ marks
(iii) A distinction

Solution:

Total number of unit tests taken $=5$
We know, Probability of an event $=($ Number of favorable outcomes $) /($ Total number of outcomes $)$
(i) Number of times student got more than $70 \%=3$

Probability (Getting more than 70%) $=3 / 5=0.6$
(ii) Number of times student got less than $70 \%=2$

Probability $($ Getting less than $70 \%)=2 / 5=0.4$
(iii) Number of times student got a distinction $=1$
[Marks more than 75\%]
Probability $($ Getting a distinction $)=1 / 5=0.2$
Question 7: To know the opinion of the students about Mathematics, a survey of $\mathbf{2 0 0}$ students were conducted.
The data was recorded in the following table:

Opinion	Like	Dislike
Number of students	135	65

Find the probability that students chosen at random:

RD Sharma Solutions for Class 9 Chapter 25

- Probability
(i) Likes Mathematics (ii) Does not like it.

Solution:

Total number of students $=200$
Students like mathematics $=135$
Students dislike Mathematics $=65$
We know, Probability of an event $=($ Number of Favorable outcomes $) /($ Total number of outcomes $)$
(i) Probability $($ Student likes mathematics $)=135 / 200=0.675$
(ii) Probability $($ Student does not like mathematics $)=65 / 200=0.325$

EXERCISE VSAQS

Question 1: Define a trial.

Solution: When we perform an experiment, it is called a trial of the experiment. Whereas, an operation which can produce some well-defined outcomes is called an experiment.

For example, we have 6 possible outcomes while rolling a die.
Question 2: Define an elementary event.
Solution: An outcome of a trial of an experiment is an elementary event.
Question 3: Define an event.
Solution: A subset of the sample space is called an event.
For Example: In the experiment of tossing a coin:
Event $\mathrm{E}=$ the event of getting a head
Event $\mathrm{F}=$ the event of getting a tail
Question 4: Define the probability of an event.
Solution: Suppose an event E can happen in mays out of a total of n possible equally likely ways.
Then, the probability of occurrence of the event $=P(E)=m / n$.

