EXERCISE 10.3 PAGE NO.10.38 Question 1: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angle of the other. Prove that the triangles are congruent. #### **Solution**: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angles of the other. (Given) To prove: Both triangles are congruent. Consider two right triangles such that $$\angle B = \angle E = 90^{\circ} \dots (i)$$ $$AB = DE \dots(ii)$$ $$\angle C = \angle F \dots (iii)$$ Here we have two right triangles, \triangle ABC and \triangle DEF From (i), (ii) and (iii), By the AAS congruence criterion, we have \triangle ABC \cong \triangle DEF Both triangles are congruent. Hence proved. ### RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles Question 2: If the bisector of the exterior vertical angle of a triangle is parallel to the base, show that the triangle is isosceles. #### **Solution:** Let ABC be a triangle such that AD is the angular bisector of the exterior vertical angle, ∠EAC and AD || BC. From figure, $\angle 1 = \angle 2$ [AD is a bisector of \angle EAC] $\angle 1 = \angle 3$ [Corresponding angles] and $\angle 2 = \angle 4$ [alternative angle] From above, we have $\angle 3 = \angle 4$ This implies, AB = AC Two sides, AB and AC, are equal. $=> \Delta$ ABC is an isosceles triangle. Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle. **Solution:** ## RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles Let \triangle ABC be isosceles where AB = AC and \angle B = \angle C Given: Vertex angle A is twice the sum of the base angles B and C. i.e., \angle A = 2(\angle B + \angle C) $$\angle A = 2(\angle B + \angle B)$$ $$\angle A = 2(2 \angle B)$$ $$\angle A = 4(\angle B)$$ Now, We know that the sum of angles in a triangle = 180° $$\angle$$ A + \angle B + \angle C =180° $$4 \angle B + \angle B + \angle B = 180^{\circ}$$ $$6 \angle B = 180^{\circ}$$ $$\angle B = 30^{\circ}$$ Since, $$\angle B = \angle C$$ $$\angle$$ B = \angle C = 30° And $$\angle A = 4 \angle B$$ $$\angle A = 4 \times 30^{\circ} = 120^{\circ}$$ Therefore, the angles of the given triangle are 30° and 30° and 120°. Question 4: PQR is a triangle in which PQ = PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT. **Solution:** Given that PQR is a triangle such that PQ = PR and S is any point on the side PQ and ST \parallel QR. To prove: PS = PT # RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles Since, PQ= PR, so \triangle PQR is an isosceles triangle. $\angle PQR = \angle PRQ$ Now, \angle PST = \angle PQR and \angle PTS = \angle PRQ [Corresponding angles as ST parallel to QR] Since, $\angle PQR = \angle PRQ$ $\angle PST = \angle PTS$ In Δ PST, \angle PST = \angle PTS Δ PST is an isosceles triangle. $Therefore,\,PS=PT.$ Hence proved.