EXERCISE 10.3

Question 1: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Solution:

In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angles of the other. (Given)

To prove: Both triangles are congruent.
Consider two right triangles such that
$\angle B=\angle \mathrm{E}=90^{\circ}$ \qquad
$\mathrm{AB}=\mathrm{DE}$
$\angle \mathrm{C}=\angle \mathrm{F}$ \qquad
Here we have two right triangles, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$
From (i), (ii) and (iii),
By the AAS congruence criterion, we have $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Both triangles are congruent. Hence proved. Congruent Triangles

Question 2: If the bisector of the exterior vertical angle of a triangle is parallel to the base, show that the triangle is isosceles.

Solution:

Let ABC be a triangle such that AD is the angular bisector of the exterior vertical angle, $\angle \mathrm{EAC}$ and $\mathrm{AD} \| \mathrm{BC}$.

From figure,
$\angle 1=\angle 2$ [AD is a bisector of $\angle \mathrm{EAC}$]
$\angle 1=\angle 3$ [Corresponding angles]
and $\angle 2=\angle 4$ [alternative angle]
From above, we have $\angle 3=\angle 4$
This implies, $\mathrm{AB}=\mathrm{AC}$
Two sides, AB and AC , are equal.
$=>\triangle A B C$ is an isosceles triangle.
Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Solution:

Let $\triangle \mathrm{ABC}$ be isosceles where $\mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{B}=\angle \mathrm{C}$
Given: Vertex angle A is twice the sum of the base angles B and C.i.e., $\angle \mathrm{A}=2(\angle \mathrm{~B}+\angle \mathrm{C})$
$\angle \mathrm{A}=2(\angle \mathrm{~B}+\angle \mathrm{B})$
$\angle \mathrm{A}=2(2 \angle \mathrm{~B})$
$\angle \mathrm{A}=4(\angle \mathrm{~B})$
Now, We know that the sum of angles in a triangle $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$4 \angle \mathrm{~B}+\angle \mathrm{B}+\angle \mathrm{B}=180^{\circ}$
$6 \angle \mathrm{~B}=180^{\circ}$
$\angle \mathrm{B}=30^{\circ}$
Since, $\angle \mathrm{B}=\angle \mathrm{C}$
$\angle \mathrm{B}=\angle \mathrm{C}=30^{\circ}$
And $\angle \mathrm{A}=4 \angle \mathrm{~B}$
$\angle \mathrm{A}=4 \times 30^{\circ}=120^{\circ}$
Therefore, the angles of the given triangle are 30° and 30° and 120°.
Question 4: $P Q R$ is a triangle in which $P Q=P R$ and is any point on the side $P Q$. Through S, a line is drawn parallel to QR and intersecting PR at T . Prove that $\mathrm{PS}=\mathrm{PT}$.

Solution: Given that PQR is a triangle such that $\mathrm{PQ}=\mathrm{PR}$ and S is any point on the side PQ and $\mathrm{ST} \| \mathrm{QR}$.
To prove: $\mathrm{PS}=\mathrm{PT}$

BYJU'S
RD Sharma Solutions for Class 9 Maths Chapter 10 Congruent Triangles

Since, $\mathrm{PQ}=\mathrm{PR}$, so $\triangle \mathrm{PQR}$ is an isosceles triangle.
$\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
Now, $\angle \mathrm{PST}=\angle \mathrm{PQR}$ and $\angle \mathrm{PTS}=\angle \mathrm{PRQ}$
[Corresponding angles as ST parallel to QR]
Since, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\angle \mathrm{PST}=\angle \mathrm{PTS}$
In Δ PST,
$\angle \mathrm{PST}=\angle \mathrm{PTS}$
Δ PST is an isosceles triangle.
Therefore, $P S=P T$.
Hence proved.

