

### **EXERCISE 10.3**

PAGE NO.10.38

Question 1: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

#### **Solution**:

In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angles of the other. (Given)





To prove: Both triangles are congruent.

Consider two right triangles such that

$$\angle B = \angle E = 90^{\circ} \dots (i)$$

$$AB = DE \dots(ii)$$

$$\angle C = \angle F \dots (iii)$$

Here we have two right triangles,  $\triangle$  ABC and  $\triangle$  DEF

From (i), (ii) and (iii),

By the AAS congruence criterion, we have  $\triangle$  ABC  $\cong$   $\triangle$  DEF

Both triangles are congruent. Hence proved.

### RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles

Question 2: If the bisector of the exterior vertical angle of a triangle is parallel to the base, show that the triangle is isosceles.

#### **Solution:**

Let ABC be a triangle such that AD is the angular bisector of the exterior vertical angle, ∠EAC and AD || BC.



From figure,

 $\angle 1 = \angle 2$  [AD is a bisector of  $\angle$  EAC]

 $\angle 1 = \angle 3$  [Corresponding angles]

and  $\angle 2 = \angle 4$  [alternative angle]

From above, we have  $\angle 3 = \angle 4$ 

This implies, AB = AC

Two sides, AB and AC, are equal.

 $=> \Delta$  ABC is an isosceles triangle.

Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

**Solution:** 



## RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles

Let  $\triangle$  ABC be isosceles where AB = AC and  $\angle$  B =  $\angle$  C

Given: Vertex angle A is twice the sum of the base angles B and C. i.e.,  $\angle$  A = 2( $\angle$  B +  $\angle$  C)

$$\angle A = 2(\angle B + \angle B)$$

$$\angle A = 2(2 \angle B)$$

$$\angle A = 4(\angle B)$$

Now, We know that the sum of angles in a triangle = $180^{\circ}$ 

$$\angle$$
 A +  $\angle$  B +  $\angle$  C =180°

$$4 \angle B + \angle B + \angle B = 180^{\circ}$$

$$6 \angle B = 180^{\circ}$$

$$\angle B = 30^{\circ}$$

Since, 
$$\angle B = \angle C$$

$$\angle$$
 B =  $\angle$  C = 30°

And 
$$\angle A = 4 \angle B$$

$$\angle A = 4 \times 30^{\circ} = 120^{\circ}$$

Therefore, the angles of the given triangle are 30° and 30° and 120°.

Question 4: PQR is a triangle in which PQ = PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.

**Solution:** Given that PQR is a triangle such that PQ = PR and S is any point on the side PQ and ST  $\parallel$  QR.

To prove: PS = PT

# RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles



Since, PQ= PR, so  $\triangle$ PQR is an isosceles triangle.

 $\angle PQR = \angle PRQ$ 

Now,  $\angle$  PST =  $\angle$  PQR and  $\angle$  PTS =  $\angle$  PRQ

[Corresponding angles as ST parallel to QR]

Since,  $\angle PQR = \angle PRQ$ 

 $\angle PST = \angle PTS$ 

In  $\Delta$  PST,

 $\angle$  PST =  $\angle$  PTS

 $\Delta$  PST is an isosceles triangle.

 $Therefore,\,PS=PT.$ 

Hence proved.