EXERCISE 10.6

Question 1: In $\triangle \mathrm{ABC}$, if $\angle \mathrm{A}=40^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$. Determine the longest and shortest sides of the triangle.
Solution: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=40^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$
We know the sum of angles in a triangle $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$40^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{C}=80^{\circ}$
Now, $40^{\circ}<60^{\circ}<80^{\circ}$
$\Rightarrow \angle \mathrm{A}<\angle \mathrm{B}<\angle \mathrm{C}$
$=>\angle \mathrm{C}$ is a greater angle and $\angle \mathrm{A}$ is a smaller angle.
Now, $\angle \mathrm{A}<\angle \mathrm{B}<\angle \mathrm{C}$
We know the side opposite to a greater angle is larger, and the side opposite to a smaller angle is smaller.
Therefore, $\mathrm{BC}<\mathrm{AC}<\mathrm{AB}$
$A B$ is the longest and $B C$ is the shortest side.
Question 2: In a $\triangle A B C$, if $\angle B=\angle C=45^{\circ}$, which is the longest side?
Solution: In $\triangle \mathrm{ABC}, \angle \mathrm{B}=\angle \mathrm{C}=45^{\circ}$
The sum of angles in a triangle $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+45^{\circ}+45^{\circ}=180^{\circ}$
$\angle \mathrm{A}=180^{\circ}-\left(45^{\circ}+45^{\circ}\right)=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{A}=90^{\circ}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{C}<\angle \mathrm{A}$
Therefore, $B C$ is the longest side.
Question 3: In $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$.
Prove that: (i) $\mathrm{AD}>\mathrm{CD}$ (ii) $\mathrm{AD}>\mathrm{AC}$
Solution: In $\triangle \mathrm{ABC}$, side AB is produced to D so that $\mathrm{BD}=\mathrm{BC}$.
$\angle \mathrm{B}=60^{\circ}$, and $\angle \mathrm{A}=70^{\circ}$

To prove: (i) $\mathrm{AD}>\mathrm{CD}$ (ii) $\mathrm{AD}>\mathrm{AC}$
Construction: Join C and D
We know the sum of angles in a triangle $=180^{\circ}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$70^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-\left(130^{\circ}\right)=50^{\circ}$
$\angle \mathrm{C}=50^{\circ}$
$\angle \mathrm{ACB}=50^{\circ}$
And also in $\triangle \mathrm{BDC}$
$\angle \mathrm{DBC}=180^{\circ}-\angle \mathrm{ABC}=180-60^{\circ}=120^{\circ}$
[$\angle \mathrm{DBA}$ is a straight line]
and $\mathrm{BD}=\mathrm{BC}$ [given]
$\angle \mathrm{BCD}=\angle \mathrm{BDC}$ [Angles opposite to equal sides are equal]
The sum of angles in a triangle $=180^{\circ}$
$\angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$
$120^{\circ}+\angle \mathrm{BCD}+\angle \mathrm{BCD}=180^{\circ}$
$120^{\circ}+2 \angle \mathrm{BCD}=180^{\circ}$
$2 \angle \mathrm{BCD}=180^{\circ}-120^{\circ}=60^{\circ}$
$\angle \mathrm{BCD}=30^{\circ}$
$\angle \mathrm{BCD}=\angle \mathrm{BDC}=30^{\circ}$
Now, consider $\triangle \mathrm{ADC}$.
$\angle \mathrm{DAC}=70^{\circ}$ [given]
$\angle \mathrm{ADC}=30^{\circ}[$ From (ii)]
$\angle \mathrm{ACD}=\angle \mathrm{ACB}+\angle \mathrm{BCD}=50^{\circ}+30^{\circ}=80^{\circ}[$ From (i) and (ii)]
Now, $\angle \mathrm{ADC}<\angle \mathrm{DAC}<\angle \mathrm{ACD}$
$\mathrm{AC}<\mathrm{DC}<\mathrm{AD}$
[Side opposite to the greater angle is longer, and the smaller angle is smaller]
$A D>C D$ and $A D>A C$
Hence proved.
Question 4: Is it possible to draw a triangle with sides of length $2 \mathrm{~cm}, \mathbf{3} \mathrm{~cm}$ and 7 cm ?

Solution:

Lengths of sides are $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm .
A triangle can be drawn only when the sum of any two sides is greater than the third side.
So, let's check the rule.
$2+3 \ngtr 7$ or $2+3<7$
$2+7>3$
and $3+7>2$
Here $2+3 \ngtr 7$
So, the triangle does not exist.

