

RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles

EXERCISE 10.6

PAGE NO: 10.66

Question 1: In \triangle ABC, if \angle A = 40° and \angle B = 60°. Determine the longest and shortest sides of the triangle.

Solution: In \triangle ABC, \angle A = 40° and \angle B = 60°

We know the sum of angles in a triangle = 180°

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $40^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$

 $\angle C = 180^{\circ} - 100^{\circ} = 80^{\circ}$

 $\angle C = 80^{\circ}$

Now, $40^{\circ} < 60^{\circ} < 80^{\circ}$

 $\Rightarrow \angle A < \angle B < \angle C$

 $\Rightarrow \angle C$ is a greater angle and $\angle A$ is a smaller angle.

Now, $\angle A < \angle B < \angle C$

We know the side opposite to a greater angle is larger, and the side opposite to a smaller angle is smaller.

Therefore, BC < AC < AB

AB is the longest and BC is the shortest side.

Question 2: In a \triangle ABC, if \angle B = \angle C = 45°, which is the longest side?

Solution: In \triangle ABC, \angle B = \angle C = 45°

The sum of angles in a triangle = 180°

 $\angle A + \angle B + \angle C = 180^{\circ}$

 $\angle \mathrm{A} + 45^\circ + 45^\circ = 180^\circ$

 $\angle A = 180^{\circ} - (45^{\circ} + 45^{\circ}) = 180^{\circ} - 90^{\circ} = 90^{\circ}$

 $\angle A = 90^{\circ}$

 $\Rightarrow \angle B = \angle C < \angle A$

Therefore, BC is the longest side.

Question 3: In \triangle ABC, side AB is produced to D so that BD = BC. If \angle B = 60° and \angle A = 70°.

Prove that: (i) AD > CD (ii) AD > AC

Solution: In \triangle ABC, side AB is produced to D so that BD = BC.

 $\angle B = 60^{\circ}$, and $\angle A = 70^{\circ}$

RD Sharma Solutions for Class 9 Maths Chapter 10 – Congruent Triangles

https://byjus.com

and BD = BC [given] \angle BCD = \angle BDC [Angles opposite to equal sides are equal] The sum of angles in a triangle =180° \angle DBC + \angle BCD + \angle BDC = 180° 120° + \angle BCD + \angle BCD = 180° 120° + 2 \angle BCD = 180° 2 \angle BCD = 180° - 120° = 60° \angle BCD = 30° \angle BCD = \angle BDC = 30°(ii) Now, consider \triangle ADC. \angle DAC = 70° [given] \angle ADC = 30° [From (ii)] \angle ACD = \angle ACB+ \angle BCD = 50° + 30° = 80° [From (i) and (ii)] Now, \angle ADC < \angle DAC < \angle ACD AC < DC < AD

[Side opposite to the greater angle is longer, and the smaller angle is smaller] AD > CD and AD > AC

Hence proved.

Question 4: Is it possible to draw a triangle with sides of length 2 cm, 3 cm and 7 cm?

Solution:

Lengths of sides are 2 cm, 3 cm and 7 cm.

A triangle can be drawn only when the sum of any two sides is greater than the third side.

So, let's check the rule.

 $2 + 3 \ge 7 \text{ or } 2 + 3 < 7$ 2 + 7 > 3and 3 + 7 > 2Here $2 + 3 \ge 7$ *So, the triangle does not exist.*

https://byjus.com