

PAGE NO. 10.12

Question 1: In the figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove that segment $DE \parallel BC$.

Solution:

Sides BA and CA have been produced such that BA = AD and CA = AE.

To prove: DE || BC

Consider \triangle BAC and \triangle DAE,

BA = AD and CA = AE (Given)

 $\angle BAC = \angle DAE$ (vertically opposite angles)

By the SAS congruence criterion, we have

 \triangle BAC \simeq \triangle DAE

We know corresponding parts of congruent triangles are equal

So, BC = DE and \angle DEA = \angle BCA, \angle EDA = \angle CBA

Now, DE and BC are two lines intersected by a transversal DB s.t.

∠DEA=∠BCA (alternate angles are equal)

Therefore, DE || BC. Proved.

Question 2: In a PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP, respectively. Prove that LN = MN.

Solution:

Draw a figure based on the given instruction,

In $\triangle PQR$, PQ = QR and L, M, N are midpoints of the sides PQ, QP and RP, respectively (Given)

To prove: LN = MN

As two sides of the triangle are equal, so \triangle PQR is an isosceles triangle

$$PQ = QR$$
 and $\angle QPR = \angle QRP \dots (i)$

Also, L and M are midpoints of PQ and QR, respectively

$$PL = LQ = QM = MR = QR/2$$

Now, consider Δ LPN and Δ MRN,

LP = MR

 \angle LPN = \angle MRN [From (i)]

 $\angle QPR = \angle LPN$ and $\angle QRP = \angle MRN$

PN = NR [N is the midpoint of PR]

By SAS congruence criterion,

 Δ LPN $\simeq \Delta$ MRN

We know that the corresponding parts of congruent triangles are equal.

 $So\ LN = MN$

Proved.

Question 3: In the figure, PQRS is a square, and SRT is an equilateral triangle. Prove that

(i)
$$PT = QT$$
 (ii) $\angle TQR = 15^{\circ}$

Solution:

Given: PQRS is a square, and SRT is an equilateral triangle.

To prove:

(i) PT =QT and (ii) \angle TQR =15°

Now,

PQRS is a square:

$$PQ = QR = RS = SP \dots (i)$$

And
$$\angle SPQ = \angle PQR = \angle QRS = \angle RSP = 90^{\circ}$$

Also, \triangle SRT is an equilateral triangle:

$$SR = RT = TS \dots(ii)$$

And
$$\angle$$
 TSR = \angle SRT = \angle RTS = 60°

From (i) and (ii)

$$PQ = QR = SP = SR = RT = TS \dots (iii)$$

From figure,

$$\angle TSP = \angle TSR + \angle RSP = 60^{\circ} + 90^{\circ} = 150^{\circ}$$
 and

$$\angle TRQ = \angle TRS + \angle SRQ = 60^{\circ} + 90^{\circ} = 150^{\circ}$$

$$=> \angle TSP = \angle TRQ = 150^{\circ}....(iv)$$

By SAS congruence criterion, Δ TSP $\simeq \Delta$ TRQ

We know that the corresponding parts of congruent triangles are equal

So,
$$PT = QT$$

Proved part (i).

Now, consider Δ TQR.

$$QR = TR [From (iii)]$$

 Δ TQR is an isosceles triangle.

 \angle QTR = \angle TQR [angles opposite to equal sides]

The sum of angles in a triangle = 180°

$$=> \angle QTR + \angle TQR + \angle TRQ = 180^{\circ}$$

$$=> 2 \angle TQR + 150^{\circ} = 180^{\circ} [From (iv)]$$

$$\Rightarrow$$
 2 \angle TQR = 30°

$$\Rightarrow \angle TQR = 15^0$$

Hence proved part (ii).

Question 4: Prove that the medians of an equilateral triangle are equal.

Solution:

Consider an equilateral $\triangle ABC$, and Let D, E, and F are midpoints of BC, CA and AB.

Here, AD, BE and CF are medians of \triangle ABC.

Now,

D is the midpoint of $BC \Rightarrow BD = DC$

Similarly, CE = EA and AF = FB

Since $\triangle ABC$ is an equilateral triangle

$$AB = BC = CA \dots(i)$$

$$BD = DC = CE = EA = AF = FB \dots (ii)$$

And also, \angle ABC = \angle BCA = \angle CAB = 60° (iii)

Consider \triangle ABD and \triangle BCE

AB = BC [From (i)]

BD = CE [From (ii)]

 \angle ABD = \angle BCE [From (iii)]

By SAS congruence criterion,

 Δ ABD \simeq Δ BCE

$$\Rightarrow$$
 AD = BE(iv)

[Corresponding parts of congruent triangles are equal in measure] Now, consider Δ BCE and Δ CAF,

BC = CA [From (i)]

 \angle BCE = \angle CAF [From (iii)]

CE = AF [From (ii)]

By SAS congruence criterion,

 Δ BCE \simeq Δ CAF

$$=> BE = CF(v)$$

[Corresponding parts of congruent triangles are equal] From (iv) and (v), we have

AD = BE = CF

Median AD = Median BE = Median CF

The medians of an equilateral triangle are equal.

Hence proved

Question 5: In a \triangle ABC, if \angle A = 120° and AB = AC. Find \angle B and \angle C.

Solution:

To find: \angle B and \angle C.

Here, \triangle ABC is an isosceles triangle since AB = AC

 $\angle B = \angle C \dots (i)$

[Angles opposite to equal sides are equal]

We know that the sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + \angle B + \angle B = 180^{\circ}$$
 (using (i)

$$120^{\circ} + 2 \angle B = 180^{\circ}$$

$$2\angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle B = 30^{\circ}$$

Therefore, $\angle B = \angle C = 30^{\circ}$

Question 6: In a \triangle ABC, if AB = AC and \angle B = 70°, find \angle A.

Solution:

Given: In a \triangle ABC, AB = AC and \angle B = 70°

 \angle B = \angle C [Angles opposite to equal sides are equal]

Therefore, $\angle B = \angle C = 70^{\circ}$

The sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\angle A + 70^{\circ} + 70^{\circ} = 180^{\circ}$$

$$\angle$$
 A = $180^{\circ} - 140^{\circ}$

$$\angle A = 40^{\circ}$$

PAGE NO.10.21

Question 1: In the figure, it is given that RT = TS, $\angle 1 = 2 \angle 2$ and $\angle 4 = 2(\angle 3)$. Prove that $\triangle RBT \cong \triangle SAT$.

Solution:

In the figure,

$$RT = TS \dots(i)$$

$$\angle 1 = 2 \angle 2 \dots (ii)$$

And
$$\angle 4 = 2 \angle 3 \dots$$
 (iii)

To prove: $\triangle RBT \cong \triangle SAT$

Let the point of intersection RB and SA be denoted by O

 \angle AOR = \angle BOS [Vertically opposite angles]

or
$$\angle 1 = \angle 4$$

$$2 \angle 2 = 2 \angle 3$$
 [From (ii) and (iii)]

or
$$\angle 2 = \angle 3 \dots (iv)$$

Now in \triangle TRS, we have RT = TS

 \Rightarrow Δ TRS is an isosceles triangle

$$\angle TRS = \angle TSR \dots (v)$$

But,
$$\angle$$
 TRS = \angle TRB + \angle 2(vi)

$$\angle TSR = \angle TSA + \angle 3 \dots (vii)$$

Putting (vi) and (vii) in (v) we get

$$\angle$$
 TRB + \angle 2 = \angle TSA + \angle 3

$$\Rightarrow$$
 \angle TRB \Rightarrow \angle TSA [From (iv)]

Consider Δ RBT and Δ SAT

RT = ST [From (i)]

 \angle TRB = \angle TSA [From (iv)]

By the ASA criterion of congruence, we have

△ RBT ≅△ SAT

Question 2: Two lines, AB and CD, intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.

Solution: Lines AB and CD Intersect at O

Such that BC || AD and

 $BC = AD \dots (i)$

To prove: AB and CD bisect at O.

First, we have to prove that \triangle AOD \cong \triangle BOC

 \angle OCB = \angle ODA [AD||BC and CD is transversal]

AD = BC [from (i)]

 $\angle OBC = \angle OAD [AD || BC \text{ and } AB \text{ is transversal}]$

By ASA Criterion:

 $\Delta AOD \cong \Delta BOC$

OA = OB and OD = OC (By c.p.c.t.)

Therefore, AB and CD bisect each other at O.

Hence Proved.

Question 3: BD and CE are bisectors of \angle B and \angle C of an isosceles \triangle ABC with AB = AC. Prove that BD = CE. Solution:

 \triangle ABC is isosceles with AB = AC, and BD and CE are bisectors of \angle B and \angle C. We have to prove BD = CE. (Given)

Since AB = AC

$$=> \angle ABC = \angle ACB \dots (i)$$

[Angles opposite to equal sides are equal] Since BD and CE are bisectors of \angle B and \angle C

$$\angle$$
 ABD = \angle DBC = \angle BCE = ECA = \angle B/2 = \angle C/2 ...(ii)

Now, Consider \triangle EBC = \triangle DCB

 \angle EBC = \angle DCB [From (i)]

BC = BC [Common side]

 \angle BCE = \angle CBD [From (ii)]

By ASA congruence criterion, Δ EBC $\cong \Delta$ DCB

Since corresponding parts of congruent triangles are equal.

=> CE = BD

or, BD = CE

Hence proved.

PAGE NO.10.38

Question 1: In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.

Solution:

In two right triangles, one side and an acute angle of one triangle are equal to the corresponding side and angles of the other. (Given)

To prove: Both triangles are congruent.

Consider two right triangles such that

$$\angle B = \angle E = 90^{\circ} \dots (i)$$

$$AB = DE \dots(ii)$$

$$\angle C = \angle F \dots (iii)$$

Here we have two right triangles, \triangle ABC and \triangle DEF

From (i), (ii) and (iii),

By the AAS congruence criterion, we have \triangle ABC \cong \triangle DEF

Both triangles are congruent. Hence proved.

Question 2: If the bisector of the exterior vertical angle of a triangle is parallel to the base, show that the triangle is isosceles.

Solution:

Let ABC be a triangle such that AD is the angular bisector of the exterior vertical angle, ∠EAC and AD || BC.

From figure,

 $\angle 1 = \angle 2$ [AD is a bisector of \angle EAC]

 $\angle 1 = \angle 3$ [Corresponding angles]

and $\angle 2 = \angle 4$ [alternative angle]

From above, we have $\angle 3 = \angle 4$

This implies, AB = AC

Two sides, AB and AC, are equal.

 $=> \Delta$ ABC is an isosceles triangle.

Question 3: In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.

Solution:

Let \triangle ABC be isosceles where AB = AC and \angle B = \angle C

Given: Vertex angle A is twice the sum of the base angles B and C. i.e., \angle A = 2(\angle B + \angle C)

$$\angle A = 2(\angle B + \angle B)$$

$$\angle A = 2(2 \angle B)$$

$$\angle A = 4(\angle B)$$

Now, We know that the sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C =180°

$$4 \angle B + \angle B + \angle B = 180^{\circ}$$

$$6 \angle B = 180^{\circ}$$

$$\angle$$
 B = 30°

Since,
$$\angle B = \angle C$$

$$\angle$$
 B = \angle C = 30°

And
$$\angle A = 4 \angle B$$

$$\angle A = 4 \times 30^{\circ} = 120^{\circ}$$

Therefore, the angles of the given triangle are 30° and 30° and 120°.

Question 4: PQR is a triangle in which PQ = PR and is any point on the side PQ. Through S, a line is drawn parallel to QR and intersecting PR at T. Prove that PS = PT.

Solution: Given that PQR is a triangle such that PQ = PR and S is any point on the side PQ and ST \parallel QR.

To prove: PS = PT

Since, PQ= PR, so \triangle PQR is an isosceles triangle.

 $\angle PQR = \angle PRQ$

Now, \angle PST = \angle PQR and \angle PTS = \angle PRQ

[Corresponding angles as ST parallel to QR]

Since, $\angle PQR = \angle PRQ$

 $\angle PST = \angle PTS$

In Δ PST,

 $\angle PST = \angle PTS$

 Δ PST is an isosceles triangle.

 $Therefore,\,PS=PT.$

Hence proved.

PAGE NO. 10.47

Question 1: In the figure, It is given that AB = CD and AD = BC. Prove that $\triangle ADC \cong \triangle CBA$.

Solution:

From the figure, AB = CD and AD = BC.

To prove: $\triangle ADC \cong \triangle CBA$

Consider \triangle ADC and \triangle CBA.

AB = CD [Given]

BC = AD [Given]

And AC = AC [Common side]

So, by the SSS congruence criterion, we have

∆ADC≅∆CBA

Hence proved.

Question 2: In a Δ PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP, respectively. Prove that LN = MN.

Solution:

Given: In \triangle PQR, PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively

To prove: LN = MN

Join L and M, M and N, N and L

We have PL = LQ, QM = MR and RN = NP

[Since L, M and N are mid-points of PQ, QR and RP, respectively] And also, PQ = QR

$$PL = LQ = QM = MR = PN = LR \dots (i)$$

[Using mid-point theorem]

 $MN \parallel PQ$ and MN = PQ/2

$$MN = PL = LQ \dots (ii)$$

Similarly, we have

LN \parallel QR and LN = (1/2)QR

 $LN = QM = MR \dots (iii)$

From equations (i), (ii) and (iii), we have

$$PL = LQ = QM = MR = MN = LN$$

This implies, LN = MN

Hence Proved.

PAGE NO. 10.51

Question 1: ABC is a triangle, and D is the mid-point of BC. The perpendiculars from D to AB and AC are equal. Prove that the triangle is isosceles.

Solution:

Given: D is the midpoint of BC and PD = DQ in a triangle ABC.

To prove: ABC is isosceles triangle.

In $\triangle BDP$ and $\triangle CDQ$

PD = QD (Given)

BD = DC (D is mid-point)

 $\angle BPD = \angle CQD = 90^{\circ}$

By RHS Criterion: $\triangle BDP \cong \triangle CDQ$

 $BP = CQ \dots (i) (By CPCT)$

In $\triangle APD$ and $\triangle AQD$

PD = QD (given)

AD = AD (common)

 $APD = AQD = 90^{\circ}$

By RHS Criterion: $\triangle APD \cong \triangle AQD$

So, $PA = QA \dots (ii)$ (By CPCT)

Adding (i) and (ii)

BP + PA = CQ + QA

AB = AC

Two sides of the triangle are equal, so ABC is an isosceles.

Question 2: ABC is a triangle in which BE and CF are, respectively, the perpendiculars to the sides AC and AB. If BE = CF, prove that Δ ABC is isosceles

Solution:

ABC is a triangle in which BE and CF are perpendicular to the sides AC and AB, respectively, s.t. BE = CF.

To prove: \triangle ABC is isosceles

In \triangle BCF and \triangle CBE,

 \angle BFC = CEB = 90° [Given]

BC = CB [Common side]

And CF = BE [Given]

By RHS congruence criterion: $\triangle BFC \cong \triangle CEB$

So, \angle FBC = \angle EBC [By CPCT]

=> \angle ABC = \angle ACB

AC = AB [Opposite sides to equal angles are equal in a triangle]

Two sides of triangle ABC are equal.

Therefore, \triangle ABC is isosceles. Hence Proved.

Question 3: If perpendiculars from any point within an angle on its arms are congruent. Prove that it lies on the bisector of that angle.

Solution:

Consider an angle ABC and BP be one of the arms within the angle.

Draw perpendiculars PN and PM on the arms BC and BA.

In Δ BPM and Δ BPN,

 \angle BMP = \angle BNP = 90° [given]

BP = BP [Common side]

MP = NP [given]

By RHS congruence criterion: ΔBPM≅ΔBPN

So, \angle MBP = \angle NBP [By CPCT] BP is the angular bisector of \angle ABC.

Hence proved

PAGE NO: 10.66

Question 1: In \triangle ABC, if \angle A = 40° and \angle B = 60°. Determine the longest and shortest sides of the triangle.

Solution: In \triangle ABC, \angle A = 40° and \angle B = 60°

We know the sum of angles in a triangle = 180°

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$40^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

$$\angle$$
 C = 80°

Now, $40^{\circ} < 60^{\circ} < 80^{\circ}$

$$\Rightarrow \angle A < \angle B < \angle C$$

 \Rightarrow \angle C is a greater angle and \angle A is a smaller angle.

Now,
$$\angle A < \angle B < \angle C$$

We know the side opposite to a greater angle is larger, and the side opposite to a smaller angle is smaller.

Therefore, BC < AC < AB

AB is the longest and BC is the shortest side.

Question 2: In a \triangle ABC, if \angle B = \angle C = 45°, which is the longest side?

Solution: In \triangle ABC, \angle B = \angle C = 45°

The sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

$$\angle A + 45^{\circ} + 45^{\circ} = 180^{\circ}$$

$$\angle A = 180^{\circ} - (45^{\circ} + 45^{\circ}) = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\angle A = 90^{\circ}$$

$$\Rightarrow \angle B = \angle C < \angle A$$

Therefore, BC is the longest side.

Question 3: In \triangle ABC, side AB is produced to D so that BD = BC. If \angle B = 60° and \angle A = 70°.

Prove that: (i) AD > CD (ii) AD > AC

Solution: In \triangle ABC, side AB is produced to D so that BD = BC.

$$\angle$$
 B = 60°, and \angle A = 70°

To prove: (i) AD > CD (ii) AD > AC

Construction: Join C and D

We know the sum of angles in a triangle = 180°

$$\angle$$
 A + \angle B + \angle C = 180°

$$70^{\circ} + 60^{\circ} + \angle C = 180^{\circ}$$

$$\angle C = 180^{\circ} - (130^{\circ}) = 50^{\circ}$$

$$\angle C = 50^{\circ}$$

$$\angle$$
 ACB = 50° (i)

And also in \triangle BDC

$$\angle DBC = 180^{\circ} - \angle ABC = 180 - 60^{\circ} = 120^{\circ}$$

[∠DBA is a straight line]

and BD = BC [given]

 \angle BCD = \angle BDC [Angles opposite to equal sides are equal]

The sum of angles in a triangle = 180°

$$\angle$$
 DBC + \angle BCD + \angle BDC = 180°

$$120^{\circ} + \angle BCD + \angle BCD = 180^{\circ}$$

$$120^{\circ} + 2 \angle BCD = 180^{\circ}$$

$$2 \angle BCD = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle$$
 BCD = 30°

$$\angle$$
 BCD = \angle BDC = 30°(ii)

Now, consider \triangle ADC.

$$\angle DAC = 70^{\circ} [given]$$

$$\angle$$
 ADC = 30° [From (ii)]

$$\angle$$
 ACD = \angle ACB+ \angle BCD = $50^{\circ} + 30^{\circ} = 80^{\circ}$ [From (i) and (ii)]

Now,
$$\angle$$
 ADC $<$ \angle DAC $<$ \angle ACD

[Side opposite to the greater angle is longer, and the smaller angle is smaller]

AD > CD and AD > AC

Hence proved.

Question 4: Is it possible to draw a triangle with sides of length 2 cm, 3 cm and 7 cm?

Solution:

Lengths of sides are 2 cm, 3 cm and 7 cm.

A triangle can be drawn only when the sum of any two sides is greater than the third side.

So, let's check the rule.

$$2 + 3 \gg 7 \text{ or } 2 + 3 < 7$$

$$2 + 7 > 3$$

and
$$3 + 7 > 2$$

Here
$$2 + 3 \gg 7$$

So, the triangle does not exist.

EXERCISE VSAQS

PAGE NO. 10.69

Question 1: In two congruent triangles, ABC and DEF, if AB = DE and BC = EF. Name the pairs of equal angles.

Solution:

In two congruent triangles ABC and DEF, if AB = DE and BC = EF, then

 $\angle A = \angle D$, $\angle B = \angle E$ and $\angle C = \angle F$

Question 2: In two triangles, ABC and DEF, it is given that $\angle A = \angle D$, $\angle B = \angle E$ and $\angle C = \angle F$. Are the two triangles necessarily congruent?

Solution: No.

Reason: Two triangles are not necessarily congruent because we know only the angle-angle (AAA) criterion. This criterion can produce similar but not congruent triangles.

Question 3: If ABC and DEF are two triangles such that AC = 2.5 cm, BC = 5 cm, $C = 75^{\circ}$, DE = 2.5 cm, DF = 5 cm and $D = 75^{\circ}$. Are two triangles congruent?

Solution: Yes.

Reason: Given triangles are congruent as AC = DE = 2.5 cm, BC = DF = 5 cm and

 $\angle D = \angle C = 75^{\circ}$.

By the SAS theorem, triangle ABC is congruent to triangle EDF.

Question 4: In two triangles, ABC and ADC, if AB = AD and BC = CD. Are they congruent?

Solution: Yes.

Reason: Given triangles are congruent as

AB = AD

BC = CD and

AC [common side]

By the SSS theorem, triangle ABC is congruent to triangle ADC.

Question 5: In triangles ABC and CDE, if AC = CE, BC = CD, $\angle A = 60^{\circ}$, $\angle C = 30^{\circ}$ and $\angle D = 90^{\circ}$. Are two triangles congruent?

Solution: Yes.

Reason: Given triangles are congruent

Here AC = CE

BC = CD

 $\angle B = \angle D = 90^{\circ}$

By SSA criteria, triangle ABC is congruent to triangle CDE.

Question 6: ABC is an isosceles triangle in which AB = AC. BE and CF are its two medians. Show that BE = CF.

Solution: ABC is an isosceles triangle (given)

AB = AC (given)

BE and CF are two medians (given)

To prove: BE = CF

In \triangle CFB and \triangle BEC

CE = BF (Since, AC = AB = AC/2 = AB/2 = CE = BF)

BC = BC (Common)

 $\angle ECB = \angle FBC$ (Angle opposite to equal sides are equal)

By SAS theorem: $\triangle CFB \cong \triangle BEC$

So, BE = CF (By c.p.c.t)