## Exercise-3.1

1. In a reaction, 5.3 g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g of water and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass.

Sodium carbonate + acetic acid $\rightarrow$ Sodium acetate + carbon dioxide + water

## Solution:

Sodium carbonate + acetic acid $\rightarrow$ Sodium acetate + carbon dioxide + water
5.3 g
6 g
8.2 g
2.2 g
0.9 g

As per the law of conservation of mass, the total mass of reactants must be equal to the total mass of products.

As per the above reaction, L.H.S. $=$ R.H.S. i.e., $5.3 \mathrm{~g}+6 \mathrm{~g}=2.2 \mathrm{~g}+0.9 \mathrm{~g}+8.2 \mathrm{~g}=11.3 \mathrm{~g}$
Hence, the observations are in agreement with the law of conservation of mass.
2. Hydrogen and oxygen combine in a ratio of $1: 8$ by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

## Solution:

We know hydrogen and water mix in a ratio 1:8.
For every 1 g of hydrogen, it is 8 g of oxygen.
Therefore, for 3 g of hydrogen, the quantity of oxygen $=3 \times 8=24 \mathrm{~g}$
Hence, 24 g of oxygen would be required for the complete reaction with 3 g of hydrogen gas.
3. Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

## Solution:

The relative number and types of atoms are constant in a given composition, says Dalton's atomic theory, which is based on the rule of conservation of mass.
"Atoms cannot be created nor be destroyed in a chemical reaction."
4. Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Solution:
The postulate of Dalton's atomic theory that can explain the law of definite proportions is that the relative number and kinds of atoms are equal in given compounds.

## Exercise-3.2

1. Define the atomic mass unit.

Solution:
An atomic mass unit is a unit of mass used to express the weights of atoms and molecules where one atomic mass is equal to $1 / 12$ th the mass of one carbon-12 atom.
2. Why is it not possible to see an atom with the naked eyes?

## Solution:

Firstly, atoms are minuscule in nature, measured in nanometres. Secondly, except for atoms of noble gases, they do not exist independently. Hence, an atom cannot be visible to the naked eyes.

## Exercise-3.3-3.4 Page: 39

1. Write down the formulae of
(i) sodium oxide
(ii) aluminium chloride
(iii) sodium sulphide
(iv) magnesium hydroxide

Solution:
The following are the formulae:
(i) sodium oxide $-\mathrm{Na}_{2} \mathrm{O}$
(ii) aluminium chloride $-\mathrm{AlCl}_{3}$
(iii) sodium sulphide $-\mathrm{Na}_{2} \mathrm{~S}$
(iv) magnesium hydroxide $-\mathrm{Mg}(\mathrm{OH})_{2}$
2. Write down the names of compounds represented by the following formulae:
(i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ii) $\mathrm{CaCl}_{2}$
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(iv) $\mathrm{KNO}_{3}$
(v) $\mathrm{CaCO}_{3}$.

Solution:
Listed below are the names of the compounds for each of the following formulae:
(i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}-$ Aluminium sulphate
(ii) $\mathrm{CaCl}_{2}-$ Calcium chloride
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4}$ - Potassium sulphate
(iv) $\mathrm{KNO}_{3}$ - Potassium nitrate
(v) $\mathrm{CaCO}_{3}-$ Calcium carbonate

## 3. What is meant by the term chemical formula?

## Solution:

Chemical formulas are used to describe the different types of atoms and their numbers in a compound or element. Each element's atoms are symbolised by one or two letters. A collection of chemical symbols that depicts the elements that make up a compound and their quantities.
For example, the chemical formula of hydrochloric acid is HCl .

## 4. How many atoms are present in a

(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule and
(ii) $\mathrm{PO}_{4}{ }^{3}$ ion?

## Solution:

The number of atoms present is as follows:
(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule has 2 atoms of hydrogen and 1 atom of sulphur hence 3 atoms in total.
(ii) $\mathrm{PO}_{4}{ }^{3}$ ion has 1 atom of phosphorus and 4 atoms of oxygen hence 5 atoms in total.

## Exercise-3.5.1-3.5.2

1. Calculate the molecular masses of $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{OH}$.

Solution:
The following are the molecular masses:
The molecular mass of $\mathrm{H}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{H}=2 \mathrm{x} 1 \mathrm{u}=2 \mathrm{u}$
The molecular mass of $\mathrm{O}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{O}=2 \times 16 \mathrm{u}=32 \mathrm{u}$
The molecular mass of $\mathrm{Cl}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{Cl}=2 \times 35.5 \mathrm{u}=71 \mathrm{u}$
The molecular mass of $\mathrm{CO}_{2}$ - atomic mass of $\mathrm{C}+2 \mathrm{x}$ atomic mass of $\mathrm{O}=12+(2 \times 16) u=44 u$
The molecular mass of $\mathrm{CH}_{4}-$ atomic mass of $\mathrm{C}+4 \mathrm{x}$ atomic mass of $\mathrm{H}=12+(4 \times 1) \mathrm{u}=16 \mathrm{u}$
The molecular mass of $\mathrm{C}_{2} \mathrm{H}_{\sigma}-2 \mathrm{x}$ atomic mass of $\mathrm{C}+6 \mathrm{x}$ atomic mass of $\mathrm{H}=(2 \mathrm{x} 12)+$
$(6 \times 1) u=24+6=30 u$
The molecular mass of $\mathrm{C}_{2} \mathrm{H}_{4}-2 \mathrm{x}$ atomic mass of $\mathrm{C}+4 \mathrm{x}$ atomic mass of $\mathrm{H}=(2 \mathrm{x} 12)+$ $(4 \times 1) \mathrm{u}=24+4=28 \mathrm{u}$

The molecular mass of $\mathrm{NH}_{3}-$ atomic mass of $\mathrm{N}+3 \mathrm{x}$ atomic mass of $\mathrm{H}=(14+3 \times 1) \mathrm{u}=17 \mathrm{u}$
The molecular mass of $\mathrm{CH}_{3} \mathrm{OH}-$ atomic mass of $\mathrm{C}+3 \mathrm{x}$ atomic mass of $\mathrm{H}+$ atomic mass of $\mathrm{O}+$ atomic mass of $\mathrm{H}=$ $(12+3 \times 1+16+1) u=(12+3+17) u=32 u$
2. Calculate the formula unit masses of $\mathrm{ZnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, given atomic masses of $\mathrm{Zn}=\mathbf{6 5 u}$,
$\mathrm{Na}=23 \mathrm{u}, \mathrm{K}=39 \mathrm{u}, \mathrm{C}=12 \mathrm{u}$, and $\mathrm{O}=16 \mathrm{u}$.
Solution:
Given:
The atomic mass of $\mathrm{Zn}=65 \mathrm{u}$
The atomic mass of $\mathrm{Na}=23 \mathrm{u}$
The atomic mass of $\mathrm{K}=39 \mathrm{u}$
The atomic mass of $\mathrm{C}=12 \mathrm{u}$
The atomic mass of $\mathrm{O}=16 \mathrm{u}$
The formula unit mass of $\mathrm{ZnO}=$ Atomic mass of $\mathrm{Zn}+$ Atomic mass of $\mathrm{O}=65 \mathrm{u}+16 \mathrm{u}=81 \mathrm{u}$
The formula unit mass of $\mathrm{Na}_{2} \mathrm{O}=2 \times$ Atomic mass of $\mathrm{Na}+$ Atomic mass of $\mathrm{O}=(2 \times 23) \mathrm{u}+16 \mathrm{u}=46 \mathrm{u}+16 \mathrm{u}=62 \mathrm{u}$
The formula unit mass of $\mathrm{K}_{2} \mathrm{CO}_{3}=2 \times$ Atomic mass of $\mathrm{K}+$ Atomic mass of $\mathrm{C}+3 \times$ Atomic mass of $\mathrm{O}=(2 \times 39) \mathrm{u}+$ $12 u+(3 \times 16) u=78 u+12 u+48 u=138 u$

## Exercise-3.5.3

1. If one mole of carbon atoms weighs 12 grams , what is the mass (in grams) of 1 atom of carbon?

Solution:
Given: 1 mole of carbon weighs 12 g
1 mole of carbon atoms $=6.022 \times 10^{23}$
The molecular mass of carbon atoms $=12 \mathrm{~g}=$ an atom of carbon mass
Hence, mass of 1 carbon atom $=12 / 6.022 \times 10^{23}=1.99 \times 10^{-23} \mathrm{~g}$
2. Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given the atomic mass of $\mathbf{N a}=$ $23 \mathrm{u}, \mathrm{Fe}=56 \mathrm{u})$ ?

Solution:
(a) In 100 grams of Na :
$\mathrm{m}=100 \mathrm{~g}$, Molar mass of Na atom $=23 \mathrm{~g}, \mathrm{~N}_{0}=6.022 \times 10^{23}, \mathrm{~N}=$ ?
$\mathrm{N}=\left(\right.$ Given mass $\left.\times \mathrm{N}_{0}\right) /$ Molar mass
$\mathrm{N}=\left(100 \times 6.022 \times 10^{23}\right) / 23$
$\mathrm{N}=26.18 \times 10^{23}$ atoms
(b) In 100 grams of Fe:
$\mathrm{m}=100 \mathrm{~g}$, Molar mass of Fe atom $=56 \mathrm{~g}, \mathrm{~N}_{0}=6.022 \times 10^{23}, \mathrm{~N}=$ ?
$\mathrm{N}=\left(\right.$ Given mass $\left.\times \mathrm{N}_{0}\right) /$ Molar mass
$\mathrm{N}=\left(100 \times 6.022 \times 10^{23}\right) / 56$
$\mathrm{N}=10.75 \times 10^{23}$ atoms
Therefore, the number of atoms is more in 100 g of Na than in 100 g of Fe .

## Exercise

1. A 0.24 g sample of a compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

## Solution:

Given: Mass of the sample compound $=0.24 \mathrm{~g}$, mass of boron $=0.096 \mathrm{~g}$, mass of oxygen $=0.144 \mathrm{~g}$
To calculate the percentage composition of the compound,
Percentage of boron $=$ mass of boron $/$ mass of the compound $\times 100$
$=0.096 \mathrm{~g} / 0.24 \mathrm{~g} \mathrm{x} 100=40 \%$
Percentage of oxygen $=100-$ percentage of boron
$=100-40=60 \%$
2. When 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combination will govern your answer?

Solution:
When 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced.

## Given that

3.0 g of carbon combines with 8.0 g of oxygen to give 11.0 of carbon dioxide.

Find out
We need to find out the mass of carbon dioxide that will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen.

## Solution

First, let us write the reaction taking place here.
$\mathrm{C}+\mathrm{O} 2 \rightarrow \mathrm{CO} 2$
As per the given condition, when 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced.
$3 \mathrm{~g}+8 \mathrm{~g} \rightarrow 11 \mathrm{~g}$ ( from the above reaction)
The total mass of reactants $=$ mass of carbon + mass of oxygen
$=3 \mathrm{~g}+8 \mathrm{~g}$
$=11 \mathrm{~g}$
The total mass of reactants = Total mass of products
Therefore, the law of conservation of mass is proved.
Then, it also depicts that carbon dioxide contains carbon and oxygen in a fixed ratio by mass, which is 3:8.
Thus, it further proves the law of constant proportions.
3 g of carbon must also combine with 8 g of oxygen only.

This means that $(50-8)=42 \mathrm{~g}$ of oxygen will remain unreacted.
The remaining 42 g of oxygen will be left un-reactive. In this case, too, only 11 g of carbon dioxide will be formed The above answer is governed by the law of constant proportions.
3. What are polyatomic ions? Give examples.

## Solution:

Polyatomic ions are ions that contain more than one atom, but they behave as a single unit.
Example: $\mathrm{CO}_{3}^{2}, \mathrm{H}_{2} \mathrm{PO}_{4}$
4. Write the chemical formula of the following.
(a) Magnesium chloride
(b) Calcium oxide
(c) Copper nitrate
(d) Aluminium chloride
(e) Calcium carbonate

Solution:
The following are the chemical formula of the above-mentioned list:
(a) Magnesium chloride $-\mathrm{MgCl}_{2}$
(b) Calcium oxide - CaO
(c) Copper nitrate $-\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(d) Aluminium chloride $-\mathrm{AlCl}_{3}$
(e) Calcium carbonate $-\mathrm{CaCO}_{3}$
5. Give the names of the elements present in the following compounds.
(a) Quick lime
(b) Hydrogen bromide
(c) Baking powder
(d) Potassium sulphate

## Solution:

The following are the names of the elements present in the following compounds:
(a) Quick lime - Calcium and oxygen ( CaO )
(b) Hydrogen bromide - Hydrogen and bromine ( HBr )
(c) Baking powder - Sodium, Carbon, Hydrogen, Oxygen $\left(\mathrm{NaHCO}_{3}\right)$
(d) Potassium sulphate - Sulphur, Oxygen, Potassium $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$
6. Calculate the molar mass of the following substances.
(a) Ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) Sulphur molecule, $\mathrm{S}_{8}$
(c) Phosphorus molecule, $\mathbf{P}_{4}$ (Atomic mass of phosphorus $=31$ )
(d) Hydrochloric acid, HCl
(e) Nitric acid, $\mathrm{HNO}_{3}$

Solution:
Listed below is the molar mass of the following substances:
(a) Molar mass of Ethyne $\mathrm{C}_{2} \mathrm{H}_{2}=2 \times$ Mass of $\mathrm{C}+2 \times$ Mass of $\mathrm{H}=(2 \times 12)+(2 \times 1)=24+2=26 \mathrm{~g}$
(b) Molar mass of Sulphur molecule $\mathrm{S}_{8}=8 \times$ Mass of $\mathrm{S}=8 \times 32=256 \mathrm{~g}$
(c) Molar mass of Phosphorus molecule, $\mathrm{P}_{4}=4 \times$ Mass of $\mathrm{P}=4 \times 31=124 \mathrm{~g}$
(d) Molar mass of Hydrochloric acid, $\mathrm{HCl}=$ Mass of $\mathrm{H}+$ Mass of $\mathrm{Cl}=1+35.5=36.5 \mathrm{~g}$
(e) Molar mass of Nitric acid, $\mathrm{HNO}_{3}=$ Mass of $\mathrm{H}+$ Mass of Nitrogen +3 x Mass of $\mathrm{O}=1+14+$ $3 \times 16=63 \mathrm{~g}$
7. What is the mass of?
(a) $\mathbf{1}$ mole of nitrogen atoms?
(b) $\mathbf{4}$ moles of aluminium atoms (Atomic mass of aluminium $=27$ )?
(c) $\mathbf{1 0}$ moles of sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$ ?

## Solution:

The mass of the above-mentioned list is as follows:
(a) Atomic mass of nitrogen atoms $=14 \mathrm{u}$

Mass of 1 mole of nitrogen atoms $=$ Atomic mass of nitrogen atoms
Therefore, the mass of 1 mole of nitrogen atom is 14 g .
(b) Atomic mass of aluminium $=27 \mathrm{u}$

Mass of 1 mole of aluminium atoms $=27 \mathrm{~g}$
1 mole of aluminium atoms $=27 \mathrm{~g}, 4$ moles of aluminium atoms $=4 \times 27=108 \mathrm{~g}$
(c) Mass of 1 mole of sodium sulphite $\mathrm{Na}_{2} \mathrm{SO}_{3}=$ Molecular mass of sodium sulphite $=2 \times$ Mass of $\mathrm{Na}+$ Mass of $\mathrm{S}+3$ x Mass of $\mathrm{O}=(2 \times 23)+32+(3 \times 16)=46+32+48=126 \mathrm{~g}$
Therefore, mass of 10 moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}=10 \times 126=1260 \mathrm{~g}$

## 8. Convert into a mole.

(a) 12 g of oxygen gas
(b) 20 g of water
(c) 22 g of carbon dioxide

Solution:
Conversion of the above-mentioned molecules into moles is as follows:
(a) Given: Mass of oxygen gas $=12 \mathrm{~g}$

Molar mass of oxygen gas $=2$ Mass of Oxygen $=2 \times 16=32 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of oxygen gas $=12 / 32=0.375$ moles
(b) Given: Mass of water $=20 \mathrm{~g}$

Molar mass of water $=2 \times$ Mass of Hydrogen + Mass of Oxygen $=2 \times 1+16=18 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of water
$=20 / 18=1.11$ moles
(c) Given: Mass of carbon dioxide $=22 \mathrm{~g}$

Molar mass of carbon dioxide $=$ Mass of $\mathrm{C}+2 \times$ Mass of Oxygen $=12+2 \times 16=12+32=44 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of carbon dioxide $=22 / 44=0.5$ moles
9. What is the mass of?
(a) 0.2 mole of oxygen atoms?
(b) 0.5 mole of water molecules?

## Solution:

The mass is as follows:
(a) Mass of 1 mole of oxygen atoms $=16 \mathrm{u}$; hence, it weighs 16 g .

Mass of 0.2 moles of oxygen atoms $=0.2 \times 16=3.2 \mathrm{~g}$
(b) Mass of 1 mole of water molecules $=18 \mathrm{u}$; hence, it weighs 18 g .

Mass of 0.5 moles of water molecules $=0.5 \times 18=9 \mathrm{~g}$

## 10. Calculate the number of molecules of sulphur ( $\mathrm{S}_{8}$ ) present in 16 g of solid sulphur.

## Solution:

To calculate the molecular mass of sulphur,
Molecular mass of Sulphur $\left(\mathrm{S}_{8}\right)=8 \times$ Mass of Sulphur $=8 \times 32=256 \mathrm{~g}$
Mass given $=16 \mathrm{~g}$
Number of moles $=$ mass given/ molar mass of sulphur
$=16 / 256=0.0625$ moles
To calculate the number of molecules of sulphur in 16 g of solid sulphur,
Number of molecules $=$ Number of moles x Avogadro number
$=0.0625 \times 6.022 \times 10^{23}$ molecules
$=3.763 \times 10^{22}$ molecules

## 11. Calculate the number of aluminium ions present in 0.051 g of aluminium oxide.

(Hint: The mass of an ion is the same as that of an atom of the same element. Atomic mass of $\mathbf{A l}=\mathbf{2 7} \mathbf{u}$ )
Solution:
To calculate the number of aluminium ions in 0.051 g of aluminium oxide,
1 mole of aluminium oxide $=6.022 \times 10^{23}$ molecules of aluminium oxide
1 mole of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=2 \mathrm{x}$ Mass of aluminium +3 x Mass of oxygen
$=(2 \times 27)+(3 \times 16)=54+48=102 \mathrm{~g}$
1 mole of aluminium oxide $=102 \mathrm{~g}=6.022 \times 10^{23}$ molecules of aluminium oxide
Therefore, 0.051 g of aluminium oxide has $=6.022 \times 10^{23} / 102 \times 0.051$
$=3.011 \times 10^{20}$ molecules of aluminium oxide
One molecule of aluminium oxide has 2 aluminium ions; hence, the number of aluminium ions present in 0.051 g of aluminium oxide $=2 \times 3.011 \times 10^{20}$ molecules of aluminium oxide.
$=6.022 \times 10^{20}$

