Exercise 1.1

1. Is zero a rational number? Can you write it in the form p / q where p and q are integers and $q \neq 0$?

Solution:

We know that a number is said to be rational if it can be written in the form p / q, where p and q are integers and q $\neq 0$.
Taking the case of ' 0 ',
Zero can be written in the form $0 / 1,0 / 2,0 / 3 \ldots$ as well as , $0 / 1,0 / 2,0 / 3$..
Since it satisfies the necessary condition, we can conclude that 0 can be written in the p / q form, where q can either be positive or negative number.
Hence, 0 is a rational number.

2. Find six rational numbers between 3 and 4.

Solution:

There are infinite rational numbers between 3 and 4 .
As we have to find 6 rational numbers between 3 and 4, we will multiply both the numbers, 3 and 4 , with $6+1=7$ (or any number greater than 6)
i.e., $3 \times(7 / 7)=21 / 7$
and, $4 \times(7 / 7)=28 / 7$. The numbers in between $21 / 7$ and $28 / 7$ will be rational and will fall between 3 and 4 .
Hence, 22/7, 23/7, 24/7, 25/7, 26/7, 27/7 are the 6 rational numbers between 3 and 4.
3. Find five rational numbers between $3 / 5$ and $4 / 5$.

Solution:

There are infinite rational numbers between $3 / 5$ and $4 / 5$.
To find out 5 rational numbers between $3 / 5$ and $4 / 5$, we will multiply both the numbers $3 / 5$ and $4 / 5$
with $5+1=6$ (or any number greater than 5)
i.e., $(3 / 5) \times(6 / 6)=18 / 30$
and, $(4 / 5) \times(6 / 6)=24 / 30$
The numbers in between $18 / 30$ and $24 / 30$ will be rational and will fall between $3 / 5$ and $4 / 5$.
Hence, 19/30, 20/30, 21/30, 22/30, 23/30 are the 5 rational numbers between $3 / 5$ and $4 / 5$
4. State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.

Solution:

True
Natural numbers- Numbers starting from 1 to infinity (without fractions or decimals)
i.e., Natural numbers $=1,2,3,4 \ldots$

Whole numbers - Numbers starting from 0 to infinity (without fractions or decimals)
i.e., Whole numbers $=0,1,2,3 \ldots$

Or, we can say that whole numbers have all the elements of natural numbers and zero.
Every natural number is a whole number; however, every whole number is not a natural number.
(ii) Every integer is a whole number.

Solution:

False

Integers- Integers are set of numbers that contain positive, negative and 0 ; excluding fractional and decimal numbers.
i.e., integers $=\{\ldots-4,-3,-2,-1,0,1,2,3,4 \ldots\}$

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)
i.e., Whole numbers= $0,1,2,3 \ldots$

Hence, we can say that integers include whole numbers as well as negative numbers.
Every whole number is an integer; however, every integer is not a whole number.

(iii) Every rational number is a whole number.

Solution:

False

Rational numbers- All numbers in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$.
i.e., Rational numbers $=0,19 / 30,2,9 /-3,-12 / 7 \ldots$

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)
i.e., Whole numbers= $0,1,2,3 \ldots$

Hence, we can say that integers include whole numbers as well as negative numbers.
All whole numbers are rational, however, all rational numbers are not whole numbers.

