Exercise 1.2

1. State whether the following statements are true or false. Justify your answers.
(i) Every irrational number is a real number.

Solution:

True
Irrational Numbers - A number is said to be irrational, if it cannot be written in the p / q, where p and q are integers and $\mathrm{q} \neq 0$.
i.e., Irrational numbers $=\pi$, e, $\sqrt{ } 3,5+\sqrt{ } 2,6.23146 \ldots, 0.101001001000 \ldots$.

Real numbers - The collection of both rational and irrational numbers are known as real numbers.
i.e., Real numbers $=\sqrt{ } 2, \sqrt{ } 5, \pi, 0.102 \ldots$

Every irrational number is a real number, however, every real number is not an irrational number.
(ii) Every point on the number line is of the form $\sqrt{ } \mathrm{m}$ where m is a natural number.

Solution:

False

The statement is false since as per the rule, a negative number cannot be expressed as square roots.
E.g., $\sqrt{ } 9=3$ is a natural number.

But $\sqrt{ } 2=1.414$ is not a natural number.
Similarly, we know that there are negative numbers on the number line, but when we take the root of a negative number it becomes a complex number and not a natural number.
E.g., $\sqrt{ }-7=7 i$, where $i=\sqrt{ }-1$

The statement that every point on the number line is of the form $\sqrt{ } \mathrm{m}$, where m is a natural number is false.
(iii) Every real number is an irrational number.

Solution:

False

The statement is false. Real numbers include both irrational and rational numbers. Therefore, every real number cannot be an irrational number.

Real numbers - The collection of both rational and irrational numbers are known as real numbers.
i.e., Real numbers $=\sqrt{ } 2, \sqrt{ } 5,, 0.102 \ldots$

Irrational Numbers - A number is said to be irrational, if it cannot be written in the p / q, where p and q are integers and $\mathrm{q} \neq 0$.
i.e., Irrational numbers $=\pi, e, \sqrt{3}, 5+\sqrt{ } 2,6.23146 \ldots, 0.101001001000 \ldots$

Every irrational number is a real number, however, every real number is not irrational.
2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Solution:

No, the square roots of all positive integers are not irrational.
For example,
$\sqrt{ } 4=2$ is rational.
$\sqrt{9}=3$ is rational.
Hence, the square roots of positive integers 4 and 9 are not irrational. (2 and 3, respectively).
3. Show how $\sqrt{ } 5$ can be represented on the number line.

Solution:
Step 1: Let line AB be of 2 unit on a number line.
Step 2: At B, draw a perpendicular line BC of length 1 unit.
Step 3: Join CA
Step 4: Now, ABC is a right angled triangle. Applying Pythagoras theorem,
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{CA}^{2}$
$2^{2}+1^{2}=\mathrm{CA}^{2}=5$
$\Rightarrow C A=\sqrt{ } 5$. Thus, $C A$ is a line of length $\sqrt{ } 5$ unit.
Step 4: Taking CA as a radius and A as a center draw an arc touching the number line. The point at which number line get intersected by arc is at $\sqrt{5}$ distance from 0 because it is a radius of the circle whose center was A .
Thus, $\sqrt{ } 5$ is represented on the number line as shown in the figure.

4. Classroom activity (Constructing the 'square root spiral') : Take a large sheet of paper and construct the 'square root spiral' in the following fashion. Start with a point O and draw a line segment OP1 of unit length. Draw a line segment P1P2 perpendicular to OP_{1} of unit length (see Fig. 1.9). Now draw a line segment $\mathrm{P}_{2} \mathrm{P}_{3}$ perpendicular to OP_{2}. Then draw a line segment $\mathrm{P}_{3} \mathbf{P}_{4}$ perpendicular to OP_{3}. Continuing in Fig. 1.9 :

Fig. 1.9: Constructing

square root spiral

Constructing this manner, you can get the line segment $\mathbf{P}_{\mathrm{n}-1} \mathbf{P n}$ by square root spiral drawing a line segment of unit length perpendicular to $\mathbf{O P}_{n-1}$. In this manner, you will have created the points $\mathbf{P}_{2}, \mathbf{P}_{3}, \ldots, \mathrm{Pn}^{\prime}, \ldots$, and joined them to create a beautiful spiral depicting $\sqrt{ } 2, \sqrt{ } 3, \sqrt{ } 4, \ldots$

Solution:

Step 1: Mark a point O on the paper. Here, O will be the center of the square root spiral.
Step 2: From O, draw a straight line, OA, of 1 cm horizontally.
Step 3: From A, draw a perpendicular line, AB, of 1 cm .
Step 4: Join OB. Here, OB will be of $\sqrt{ } 2$
Step 5: Now, from B, draw a perpendicular line of 1 cm and mark the end point C.
Step 6: Join OC. Here, OC will be of $\sqrt{ } 3$
Step 7: Repeat the steps to draw $\sqrt{ } 4, \sqrt{ } 5, \sqrt{ } 6 \ldots$

