Exercise 1.3

1. Write the following in decimal form and say what kind of decimal expansion each has :
(i) $36 / 100$

Solution:

$=0.36$ (Terminating)
(ii) $1 / 11$

Solution:

$=0.0909 \ldots=0 . \overline{\overline{09}}$ (Non terminating and repeating)
(iii) $4 \frac{1}{8}$

Solution:
$4 \frac{1}{8}=\frac{33}{8}$

$=4.125$ (Terminating)
(iv) $3 / 13$

Solution:

$=0.230769 \ldots=0 . \overline{230769}$
(v) $2 / 11$

Solution:

$=0.181818181818 \ldots=0 . \overline{18}$ (Non terminating and repeating)
(vi) $329 / 400$

Solution:

400 \begin{tabular}{|c}

0.8225
329
0
3290
3200
900
800
1000
800
2000
2000
0

\end{tabular}

$=0.8225$ (Terminating)
2. You know that $1 / 7=0.142857$. Can you predict what the decimal expansions of $2 / 7,3 / 7,4 / 7,5 / 7,6 / 7$ are, without actually doing the long division? If so, how?
[Hint: Study the remainders while finding the value of $1 / 7$ carefully.]
Solution:

$$
\begin{aligned}
& 1 / 7=0.142857 \\
& \therefore 2 \times 1 / 7=2 \times 0 . \overline{\overline{142857}}=0 . \overline{285714} \\
& 3 \times 1 / 7=3 \times 0.1 \overline{42857=} 0.4 \overline{28571} \\
& 4 \times 1 / 7=4 \times 0.1 \overline{42857=} 0.5 \overline{71428} \\
& 5 \times 1 / 7=5 \times 0.1 \overline{42857=} 0.7 \overline{\overline{14285}} \\
& 6 \times 1 / 7=6 \times 0.1 \overline{42857=} 0.8 \overline{57142}
\end{aligned}
$$

3. Express the following in the form p / q, where p and q are integers and $q 0$.
(i) $\mathbf{0 .} \overline{\mathbf{6}}$

Solution:
$0 . \overline{6}=0.666 \ldots$
Assume that $x=0.666 \ldots$
Then, $10 x=6.666 \ldots$
$10 x=6+x$
$9 x=6$
$x=2 / 3$
(ii)
$0.4 \overline{7}$

Solution:
$0.4 \overline{7}=0.4777 .$.
$=(4 / 10)+(0.777 / 10)$
Assume that $x=0.777 \ldots$
Then, $10 x=7.777 \ldots$
$10 x=7+x$
$x=7 / 9$
$(4 / 10)+(0.777 . . / 10)=(4 / 10)+(7 / 90)(x=7 / 9$ and $x=0.777 \ldots 0.777 \ldots / 10=7 /(9 \times 10)=7 / 90)$
$=(36 / 90)+(7 / 90)=43 / 90$
(iii) $0 . \overline{001}$

Solution:

$$
0 . \overline{001}=0.001001 \ldots
$$

Assume that $x=0.001001 \ldots$
Then, $1000 x=1.001001 \ldots$

$$
1000 x=1+x
$$

$$
999 x=1
$$

$x=1 / 999$
4. Express $0.99999 \ldots$... in the form p / q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Solution:
Assume that $x=0.9999 \ldots .$. Eq (a)
Multiplying both sides by 10 ,
$10 x=9.9999 \ldots$ Eq. (b)
Eq.(b) - Eq.(a), we get
$10 x=9.9999$
$-x=-0.9999 \ldots$
$9 x=9$
$x=1$
The difference between 1 and 0.999999 is 0.000001 which is negligible.
Hence, we can conclude that, 0.999 is too much near 1 , therefore, 1 as the answer can be justified.
5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17? Perform the division to check your answer.

Solution:
1/17
Dividing 1 by 17 :

$\frac{1}{17}=0.0 \overline{\overline{588235294117647}}$
There are 16 digits in the repeating block of the decimal expansion of $1 / 17$.
6. Look at several examples of rational numbers in the form $p / q(q \neq 0)$, where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Solution:

We observe that when q is $2,4,5,8,10 \ldots$ Then the decimal expansion is terminating. For example:
$1 / 2=0.5$, denominator $\mathrm{q}=2^{1}$
$7 / 8=0.875$, denominator $\mathrm{q}=2^{3}$
$4 / 5=0.8$, denominator $\mathrm{q}=5^{1}$
We can observe that the terminating decimal may be obtained in the situation where prime factorization of the denominator of the given fractions has the power of only 2 or only 5 or both.
7. Write three numbers whose decimal expansions are non-terminating non-recurring.

Solution:

We know that all irrational numbers are non-terminating non-recurring. three numbers with decimal expansions that are non-terminating non-recurring are:

1. $\sqrt{ } 3=1.732050807568$
2. $\sqrt{ } 26=5.099019513592$
3. $\sqrt{ } 101=10.04987562112$
4. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Solution:

$$
\begin{aligned}
& \frac{5}{7}=0 . \overline{714285} \\
& \frac{9}{11}=0 . \overline{81}
\end{aligned}
$$

Three different irrational numbers are:

1. $0.73073007300073000073 \ldots$
2. $0.75075007300075000075 \ldots$
3. $0.76076007600076000076 \ldots$
4. Classify the following numbers as rational or irrational according to their type:
(i) $\sqrt{ } 23$

Solution:
$\sqrt{ } 23=4.79583152331 \ldots$
Since the number is non-terminating and non-recurring therefore, it is an irrational number.
(ii) $\sqrt{225}$

Solution:
${ }^{2} 25=15=15 / 1$
Since the number can be represented in p / q form, it is a rational number.
(iii) 0.3796

Solution:
Since the number, 0.3796 , is terminating, it is a rational number.
(iv) 7.478478

Solution:
The number,7.478478, is non-terminating but recurring, it is a rational number.
(v) $1.101001000100001 \ldots$

Solution:
Since the number, 1.101001000100001..., is non-terminating non-repeating (non-recurring), it is an irrational number.

