Exercise 2.1

Page: 32

1. Which of the following expressions are polynomials in one variable, and which are not? State reasons for your answer.
(i) $4 x^{2}-3 x+7$

Solution:
The equation $4 x^{2}-3 x+7$ can be written as $4 x^{2}-3 x^{1}+7 x^{0}$
Since x is the only variable in the given equation and the powers of x (i.e. 2,1 and 0) are whole numbers, we can say that the expression $4 x^{2}-3 x+7$ is a polynomial in one variable.
(ii) $\mathbf{y}^{2}+\sqrt{ } \mathbf{2}$

Solution:

The equation $y^{2}+\sqrt{ } 2$ can be written as $y^{2}+\sqrt{ } 2 y^{0}$
Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^{2}+\sqrt{2}$ is a polynomial in one variable.
(iii) $3 \sqrt{ } \mathrm{t}+\mathrm{t} \sqrt{ } 2$

Solution:
The equation $3 \sqrt{ } \mathrm{t}+\mathrm{t} \sqrt{ } 2$ can be written as $3 \mathrm{t}^{1 / 2}+\sqrt{ } 2 \mathrm{t}$
Though t is the only variable in the given equation, the power of t (i.e., $1 / 2$) is not a whole number. Hence, we can say that the expression $3 \sqrt{ } \mathrm{t}+\mathrm{t} \sqrt{ } 2$ is not a polynomial in one variable.
(iv) $\mathbf{y}+2 / \mathbf{y}$

Solution:
The equation $y+2 / y$ can be written as $y+2 y^{-1}$
Though y is the only variable in the given equation, the power of y (i.e., -1) is not a whole number. Hence, we can say that the expression $y+2 / y$ is not a polynomial in one variable.
(v) $\mathbf{x}^{10}+y^{3}+t^{50}$

Solution:
Here, in the equation $x^{10}+y^{3}+t^{50}$
Though the powers, $10,3,50$, are whole numbers, there are 3 variables used in the expression $x^{10}+y^{3}+t^{50}$. Hence, it is not a polynomial in one variable.
2. Write the coefficients of x^{2} in each of the following:
(i) $2+x^{2}+x$

Solution:
The equation $2+x^{2}+x$ can be written as $2+(1) x^{2}+x$

We know that the coefficient is the number which multiplies the variable.
Here, the number that multiplies the variable x^{2} is 1
Hence, the coefficient of x^{2} in $2+x^{2}+x$ is 1 .
(ii) $2-\mathrm{x}^{2}+\mathrm{x}^{3}$

Solution:
The equation $2-x^{2}+x^{3}$ can be written as $2+(-1) x^{2}+x^{3}$
We know that the coefficient is the number (along with its sign, i.e. - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is -1
Hence, the coefficient of x^{2} in $2-x^{2}+x^{3}$ is -1 .
(iii) $(\pi / 2) x^{2}+x$

Solution:

The equation $(\pi / 2) x^{2}+x$ can be written as $(\pi / 2) x^{2}+x$
We know that the coefficient is the number (along with its sign, i.e. - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is $\pi / 2$.
Hence, the coefficient of x^{2} in $(\pi / 2) x^{2}+x$ is $\pi / 2$.
(iii) $\sqrt{ } 2 x-1$

Solution:

The equation $\sqrt{ } 2 x-1$ can be written as $0 x^{2}+\sqrt{ } 2 x-1$ [Since $0 x^{2}$ is 0]
We know that the coefficient is the number (along with its sign, i.e. - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is 0
Hence, the coefficient of x^{2} in $\sqrt{2 x}-1$ is 0 .
3. Give one example each of a binomial of degree 35 , and of a monomial of degree 100 .

Solution:
Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35.

For example, $3 x^{35}+5$
Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100.

For example, $4 \mathrm{x}^{100}$
4. Write the degree of each of the following polynomials:
(i) $5 x^{3}+4 x^{2}+7 x$

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.
Here, $5 x^{3}+4 x^{2}+7 x=5 x^{3}+4 x^{2}+7 x^{1}$
The powers of the variable x are: $3,2,1$
The degree of $5 x^{3}+4 x^{2}+7 x$ is 3 , as 3 is the highest power of x in the equation.
(ii) $4-\mathbf{y}^{2}$

Solution:
The highest power of the variable in a polynomial is the degree of the polynomial.
Here, in $4-\mathrm{y}^{2}$,
The power of the variable y is 2
The degree of $4-y^{2}$ is 2 , as 2 is the highest power of y in the equation.
(iii) $\mathbf{5 t}-\sqrt{7}$

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.
Here, in 5t- $\sqrt{7}$
The power of the variable t is: 1
The degree of $5 t-\sqrt{7}$ is 1 , as 1 is the highest power of y in the equation.
(iv) 3

Solution:
The highest power of the variable in a polynomial is the degree of the polynomial.
Here, $3=3 \times 1=3 \times x^{0}$
The power of the variable here is: 0
Hence, the degree of 3 is 0 .
5. Classify the following as linear, quadratic and cubic polynomials:

Solution:
We know that,
Linear polynomial: A polynomial of degree one is called a linear polynomial.
Quadratic polynomial: A polynomial of degree two is called a quadratic polynomial.
Cubic polynomial: A polynomial of degree three is called a cubic polynomial.
(i) $x^{2}+x$

Solution:

The highest power of $x^{2}+x$ is 2
The degree is 2

Hence, $x^{2}+x$ is a quadratic polynomial
(ii) $x-x^{3}$

Solution:
The highest power of $x-x^{3}$ is 3
The degree is 3
Hence, $x-x^{3}$ is a cubic polynomial
(iii) $y+y^{2}+4$

Solution:
The highest power of $y+y^{2}+4$ is 2
The degree is 2
Hence, $y+y^{2}+4$ is a quadratic polynomial
(iv) $1+\mathrm{x}$

Solution:
The highest power of $1+\mathrm{x}$ is 1
The degree is 1
Hence, $1+\mathrm{x}$ is a linear polynomial.
(v) $3 t$

Solution:
The highest power of $3 t$ is 1
The degree is 1
Hence, 3 t is a linear polynomial.
(vi) \mathbf{r}^{2}

Solution:
The highest power of r^{2} is 2
The degree is 2
Hence, r^{2} is a quadratic polynomial.
(vii) $7 \mathrm{x}^{3}$

Solution:
The highest power of $7 x^{3}$ is 3
The degree is 3
Hence, $7 \mathrm{x}^{3}$ is a cubic polynomial.

