Exercise 2.2

1. Find the value of the polynomial $(x)=5 x-4 x^{2}+3$.
(i) $\mathrm{x}=0$
(ii) $x=-1$
(iii) $\mathrm{x}=2$

Solution:
Let $\mathrm{f}(\mathrm{x})=5 \mathrm{x}-4 \mathrm{x}^{2}+3$
(i) When $\mathrm{x}=0$
$\mathrm{f}(0)=5(0)-4(0)^{2}+3$
$=3$
(ii) When $\mathrm{x}=-1$
$\mathrm{f}(\mathrm{x})=5 \mathrm{x}-4 \mathrm{x}^{2}+3$
$f(-1)=5(-1)-4(-1)^{2}+3$
$=-5-4+3$
$=-6$
(iii) When $x=2$
$\mathrm{f}(\mathrm{x})=5 \mathrm{x}-4 \mathrm{x}^{2}+3$
$f(2)=5(2)-4(2)^{2}+3$
$=10-16+3$
$=-3$
2. Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials:
(i) $p(y)=y^{2}-y+1$

Solution:
$p(y)=y^{2}-y+1$
$\therefore \mathrm{p}(0)=(0)^{2}-(0)+1=1$
$\mathrm{p}(1)=(1)^{2}-(1)+1=1$
$\mathrm{p}(2)=(2)^{2}-(2)+1=3$
(ii) $p(t)=2+t+2 t^{2}-t^{3}$

Solution:
$\mathrm{p}(\mathrm{t})=2+\mathrm{t}+2 \mathrm{t}^{2}-\mathrm{t}^{3}$
$\therefore \mathrm{p}(0)=2+0+2(0)^{2}-(0)^{3}=2$
$\mathrm{p}(1)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4$
$\mathrm{p}(2)=2+2+2(2)^{2}-(2)^{3}=2+2+8-8=4$
(iii) $\mathbf{p}(\mathbf{x})=\mathbf{x}^{3}$

Solution:
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}$
$\therefore \mathrm{p}(0)=(0)^{3}=0$
$p(1)=(1)^{3}=1$
$p(2)=(2)^{3}=8$
(iv) $p(x)=(x-1)(x+1)$

Solution:
$\mathrm{p}(\mathrm{x})=(\mathrm{x}-1)(\mathrm{x}+1)$
$\therefore \mathrm{p}(0)=(0-1)(0+1)=(-1)(1)=-1$
$p(1)=(1-1)(1+1)=0(2)=0$
$\mathrm{p}(2)=(2-1)(2+1)=1(3)=3$
3. Verify whether the following are zeroes of the polynomial indicated against them.
(i) $p(x)=3 x+1, x=-1 / 3$

Solution:
For, $x=-1 / 3, p(x)=3 x+1$
$\therefore \mathrm{p}(-1 / 3)=3(-1 / 3)+1=-1+1=0$
$\therefore-1 / 3$ is a zero of $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=5 x-\pi, x=4 / 5$

Solution:
For, $x=4 / 5, p(x)=5 x-\pi$
$\therefore \mathrm{p}(4 / 5)=5(4 / 5)-\pi=4-\pi$
$\therefore 4 / 5$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{2}-1, x=1,-1$

Solution:
For, $\mathrm{x}=1,-1$;
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-1$
$\therefore \mathrm{p}(1)=1^{2}-1=1-1=0$
$\mathrm{p}(-1)=(-1)^{2}-1=1-1=0$
$\therefore 1,-1$ are zeros of $\mathrm{p}(\mathrm{x})$.
(iv) $p(x)=(x+1)(x-2), x=-1,2$

Solution:
For, $\mathrm{x}=-1,2$;
$\mathrm{p}(\mathrm{x})=(\mathrm{x}+1)(\mathrm{x}-2)$
$\therefore \mathrm{p}(-1)=(-1+1)(-1-2)$
$=(0)(-3)=0$
$\mathrm{p}(2)=(2+1)(2-2)=(3)(0)=0$
$\therefore-1,2$ are zeros of $\mathrm{p}(\mathrm{x})$.
(v) $p(x)=x^{2}, x=0$

Solution:
For, $\mathrm{x}=0 \mathrm{p}(\mathrm{x})=\mathrm{x}^{2}$
$\mathrm{p}(0)=0^{2}=0$
$\therefore 0$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vi) $\mathbf{p}(\mathbf{x})=l x+\mathbf{m}, \mathbf{x}=-\mathbf{m} / l$

Solution:
For, $\mathrm{x}=-\mathrm{m} / \mathrm{l} ; \mathrm{p}(\mathrm{x})=l \mathrm{x}+\mathrm{m}$
$\therefore \mathrm{p}(-\mathrm{m} / l)=l(-\mathrm{m} / l)+\mathrm{m}=-\mathrm{m}+\mathrm{m}=0$
$\therefore-\mathrm{m} / l$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vii) $p(x)=3 x^{2}-1, x=-1 / \sqrt{3}, 2 / \sqrt{ } 3$

Solution:
For, $x=-1 / \sqrt{3}, 2 / \sqrt{3} ; p(x)=3 x^{2}-1$
$\therefore \mathrm{p}(-1 / \sqrt{ } 3)=3(-1 / \sqrt{ } 3)^{2}-1=3(1 / 3)-1=1-1=0$
$\therefore \mathrm{p}(2 / \sqrt{ } 3)=3(2 / \sqrt{ } 3)^{2}-1=3(4 / 3)-1=4-1=3 \neq 0$
$\therefore-1 / \sqrt{3}$ is a zero of $\mathrm{p}(\mathrm{x})$, but $2 / \sqrt{ } 3$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(viii) $p(x)=2 x+1, x=1 / 2$

Solution:
For, $x=1 / 2 p(x)=2 x+1$
$\therefore \mathrm{p}(1 / 2)=2(1 / 2)+1=1+1=2 \neq 0$
$\therefore 1 / 2$ is not a zero of $\mathrm{p}(\mathrm{x})$.
4. Find the zero of the polynomials in each of the following cases:
(i) $p(x)=x+5$

Solution:
$\mathrm{p}(\mathrm{x})=\mathrm{x}+5$
$\Rightarrow \mathrm{x}+5=0$
$\Rightarrow \mathrm{x}=-5$
$\therefore-5$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=x-5$

Solution:
$p(x)=x-5$
$\Rightarrow \mathrm{x}-5=0$
$\Rightarrow \mathrm{x}=5$
$\therefore 5$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(iii) $\mathbf{p}(\mathrm{x})=2 \mathrm{x}+5$

Solution:
$\mathrm{p}(\mathrm{x})=2 \mathrm{x}+5$
$\Rightarrow 2 \mathrm{x}+5=0$
$\Rightarrow 2 \mathrm{x}=-5$
$\Rightarrow \mathrm{x}=-5 / 2$
$\therefore \mathrm{x}=-5 / 2$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(iv) $\mathbf{p}(\mathbf{x})=3 \mathrm{x}-2$

Solution:
$\mathrm{p}(\mathrm{x})=3 \mathrm{x}-2$
$\Rightarrow 3 \mathrm{x}-2=0$
$\Rightarrow 3 \mathrm{x}=2$
$\Rightarrow x=2 / 3$
$\therefore \mathrm{x}=2 / 3$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(v) $\mathbf{p}(\mathbf{x})=3 \mathrm{x}$

Solution:
$\mathrm{p}(\mathrm{x})=3 \mathrm{x}$
$\Rightarrow 3 \mathrm{x}=0$
$\Rightarrow \mathrm{x}=0$
$\therefore 0$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(vi) $\mathbf{p}(\mathbf{x})=\mathbf{a x}, \mathbf{a} \neq \mathbf{0}$

Solution:
$\mathrm{p}(\mathrm{x})=\mathrm{ax}$
$\Rightarrow \mathrm{ax}=0$
$\Rightarrow \mathrm{x}=0$
$\therefore \mathrm{x}=0$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(vii) $p(x)=c x+d, c \neq 0, c, d$ are real numbers.

Solution:
$\mathrm{p}(\mathrm{x})=\mathrm{cx}+\mathrm{d}$
$\Rightarrow \mathrm{cx}+\mathrm{d}=0$
$\Rightarrow \mathrm{x}=-\mathrm{d} / \mathrm{c}$
$\therefore \mathrm{x}=-\mathrm{d} / \mathrm{c}$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.

