Exercise 2.4

1. Determine which of the following polynomials has $(x+1)$ a factor:
(i) $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$

Solution:
Let $p(x)=x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1 . $[x+1=0$ means $x=-1]$
$\mathrm{p}(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$
$=-1+1-1+1$
$=0$
\therefore By factor theorem, $\mathrm{x}+1$ is a factor of $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(ii) $x^{4}+x^{3}+x^{2}+x+1$

Solution:
Let $p(x)=x^{4}+x^{3}+x^{2}+x+1$
The zero of $x+1$ is -1 . $[x+1=0$ means $x=-1]$
$\mathrm{p}(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$
$=1-1+1-1+1$
$=1 \neq 0$
\therefore By factor theorem, $\mathrm{x}+1$ is not a factor of $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(iii) $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$

Solution:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
The zero of $x+1$ is -1 .
$\mathrm{p}(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}+(-1)+1$
$=1-3+3-1+1$
$=1 \neq 0$
\therefore By factor theorem, $\mathrm{x}+1$ is not a factor of $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Solution:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$
The zero of $\mathrm{x}+1$ is -1 .
$p(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{ } 2)(-1)+\sqrt{ } 2=-1-1+2+\sqrt{ } 2+\sqrt{ } 2$
$=2 \sqrt{ } 2 \neq 0$
\therefore By factor theorem, $x+1$ is not a factor of $\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{ } 2) \mathrm{x}+\sqrt{ } 2$
2. Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:
(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

Solution:
$p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$
$\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}+1=0$
$\Rightarrow \mathrm{x}=-1$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -1 .
Now,
$\mathrm{p}(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$
$=-2+1+2-1$
$=0$
\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$

Solution:
$p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$
$\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}+2=0$
$\Rightarrow \mathrm{x}=-2$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -2 .
Now,
$\mathrm{p}(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$
$=-8+12-6+1$
$=-1 \neq 0$
\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$

Solution:
$p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$
$\mathrm{g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}-3=0$
$\Rightarrow \mathrm{x}=3$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is 3 .
Now,
$p(3)=(3)^{3}-4(3)^{2}+(3)+6$
$=27-36+3+6$
$=0$
\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
3. Find the value of k, if $x-1$ is a factor of $p(x)$ in each of the following cases:
(i) $p(x)=x^{2}+x+k$

Solution:
If $\mathrm{x}-1$ is a factor of $\mathrm{p}(\mathrm{x})$, then $\mathrm{p}(1)=0$
By Factor Theorem
$\Rightarrow(1)^{2}+(1)+\mathrm{k}=0$
$\Rightarrow 1+1+\mathrm{k}=0$
$\Rightarrow 2+\mathrm{k}=0$
$\Rightarrow \mathrm{k}=-2$
(ii) $\mathbf{p}(\mathbf{x})=\mathbf{2} \mathbf{x}^{2}+\mathbf{k x}+\sqrt{ } 2$

Solution:
If $\mathrm{x}-1$ is a factor of $\mathrm{p}(\mathrm{x})$, then $\mathrm{p}(1)=0$
$\Rightarrow 2(1)^{2}+\mathrm{k}(1)+\sqrt{ } 2=0$
$\Rightarrow 2+\mathrm{k}+\sqrt{ } 2=0$
$\Rightarrow \mathrm{k}=-(2+\sqrt{ } 2)$
(iii) $\mathbf{p}(\mathbf{x})=\mathbf{k x}^{2}-\sqrt{2} \mathbf{x}+1$

Solution:
If $x-1$ is a factor of $p(x)$, then $p(1)=0$
By Factor Theorem
$\Rightarrow \mathrm{k}(1)^{2}-\sqrt{2}(1)+1=0$
$\Rightarrow \mathrm{k}=\sqrt{2}-1$
(iv) $\mathbf{p}(\mathbf{x})=k x^{2}-3 x+k$

Solution:
If $\mathrm{x}-1$ is a factor of $\mathrm{p}(\mathrm{x})$, then $\mathrm{p}(1)=0$

By Factor Theorem
$\Rightarrow \mathrm{k}(1)^{2}-3(1)+\mathrm{k}=0$
$\Rightarrow \mathrm{k}-3+\mathrm{k}=0$
$\Rightarrow 2 \mathrm{k}-3=0$
$\Rightarrow \mathrm{k}=3 / 2$

4. Factorise:

(i) $12 \mathrm{x}^{2}-7 \mathrm{x}+1$

Solution:
Using the splitting the middle term method,
We have to find a number whose sum $=-7$ and product $=1 \times 12=12$
We get -3 and -4 as the numbers $[-3+-4=-7$ and $-3 x-4=12]$
$12 \mathrm{x}^{2}-7 \mathrm{x}+1=12 \mathrm{x}^{2}-4 \mathrm{x}-3 \mathrm{x}+1$
$=4 \mathrm{x}(3 \mathrm{x}-1)-1(3 \mathrm{x}-1)$
$=(4 \mathrm{x}-1)(3 \mathrm{x}-1)$
(ii) $2 \mathrm{x}^{2}+7 \mathrm{x}+3$

Solution:

Using the splitting the middle term method,
We have to find a number whose sum $=7$ and product $=2 \times 3=6$
We get 6 and 1 as the numbers [$6+1=7$ and $6 \times 1=6$]
$2 x^{2}+7 x+3=2 x^{2}+6 x+1 x+3$
$=2 \mathrm{x}(\mathrm{x}+3)+1(\mathrm{x}+3)$
$=(2 \mathrm{x}+1)(\mathrm{x}+3)$
(iii) $6 x^{2}+5 x-6$

Solution:
Using the splitting the middle term method,
We have to find a number whose sum $=5$ and product $=6 x-6=-36$
We get -4 and 9 as the numbers $[-4+9=5$ and $-4 \times 9=-36]$
$6 x^{2}+5 x-6=6 x^{2}+9 x-4 x-6$
$=3 x(2 x+3)-2(2 x+3)$
$=(2 \mathrm{x}+3)(3 \mathrm{x}-2)$
(iv) $3 \mathrm{x}^{2}-\mathrm{x}-4$

Solution:

Using the splitting the middle term method,
We have to find a number whose sum $=-1$ and product $=3 \times-4=-12$
We get -4 and 3 as the numbers $[-4+3=-1$ and $-4 \times 3=-12]$
$3 x^{2}-x-4=3 x^{2}-4 x+3 x-4$
$=x(3 x-4)+1(3 x-4)$
$=(3 x-4)(x+1)$

5. Factorise:

(i) $\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2$

Solution:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2$
Factors of 2 are ± 1 and ± 2
Now,

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}^{2}-\mathrm{x}+2 \\
& \mathrm{p}(-1)=(-1)^{3}-2(-1)^{2}-(-1)+2 \\
& =-1-2+1+2 \\
& =0
\end{aligned}
$$

Therefore, $(\mathrm{x}+1)$ is the factor of $\mathrm{p}(\mathrm{x})$

Now, Dividend $=$ Divisor \times Quotient + Remainder
$(x+1)\left(x^{2}-3 x+2\right)=(x+1)\left(x^{2}-x-2 x+2\right)$
$=(\mathrm{x}+1)(\mathrm{x}(\mathrm{x}-1)-2(\mathrm{x}-1))$
$=(\mathrm{x}+1)(\mathrm{x}-1)(\mathrm{x}-2)$
(ii) $\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 x-5$

Solution:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}-9 \mathrm{x}-5$
Factors of 5 are ± 1 and ± 5
By the trial method, we find that
$p(5)=0$
So, ($\mathrm{x}-5$) is factor of $\mathrm{p}(\mathrm{x})$
Now,
$p(x)=x^{3}-3 x^{2}-9 x-5$
$\mathrm{p}(5)=(5)^{3}-3(5)^{2}-9(5)-5$
$=125-75-45-5$
$=0$
Therefore, ($x-5$) is the factor of $p(x)$

0
Now, Dividend $=$ Divisor \times Quotient + Remainder
$(\mathrm{x}-5)\left(\mathrm{x}^{2}+2 \mathrm{x}+1\right)=(\mathrm{x}-5)\left(\mathrm{x}^{2}+\mathrm{x}+\mathrm{x}+1\right)$
$=(\mathrm{x}-5)(\mathrm{x}(\mathrm{x}+1)+1(\mathrm{x}+1))$
$=(x-5)(x+1)(x+1)$
(iii) $x^{3}+13 x^{2}+32 x+20$

Solution:
Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$
Factors of 20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20
By the trial method, we find that
$p(-1)=0$

So, $(x+1)$ is factor of $p(x)$
Now,
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20$
$\mathrm{p}(-1)=(-1)^{3}+13(-1)^{2}+32(-1)+20$
$=-1+13-32+20$
$=0$
Therefore, $(\mathrm{x}+1)$ is the factor of $\mathrm{p}(\mathrm{x})$

Now, Dividend $=$ Divisor \times Quotient + Remainder
$(\mathrm{x}+1)\left(\mathrm{x}^{2}+12 \mathrm{x}+20\right)=(\mathrm{x}+1)\left(\mathrm{x}^{2}+2 \mathrm{x}+10 \mathrm{x}+20\right)$
$=(x+1) x(x+2)+10(x+2)$
$=(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+10)$
(iv) $2 \mathbf{y}^{3}+\mathbf{y}^{2}-2 y-1$

Solution:

Let $\mathrm{p}(\mathrm{y})=2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1$
Factors $=2 \times(-1)=-2$ are ± 1 and ± 2
By the trial method, we find that
$p(1)=0$
So, $(\mathrm{y}-1)$ is factor of $\mathrm{p}(\mathrm{y})$
Now,
$\mathrm{p}(\mathrm{y})=2 \mathrm{y}^{3}+\mathrm{y}^{2}-2 \mathrm{y}-1$
$p(1)=2(1)^{3}+(1)^{2}-2(1)-1$
$=2+1-2$
$=0$
Therefore, $(y-1)$ is the factor of $p(y)$

Now, Dividend $=$ Divisor \times Quotient + Remainder
$(y-1)\left(2 y^{2}+3 y+1\right)=(y-1)\left(2 y^{2}+2 y+y+1\right)$
$=(\mathrm{y}-1)(2 \mathrm{y}(\mathrm{y}+1)+1(\mathrm{y}+1))$
$=(y-1)(2 y+1)(y+1)$

