Exercise 2.5

1. Use suitable identities to find the following products:
(i) $(x+4)(x+10)$

Solution:

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $\mathrm{a}=4$ and $\mathrm{b}=10$]
We get,
$(\mathrm{x}+4)(\mathrm{x}+10)=\mathrm{x}^{2}+(4+10) \mathrm{x}+(4 \times 10)$
$=\mathrm{x}^{2}+14 \mathrm{x}+40$
(ii) $(x+8)(x-10)$

Solution:

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $\mathrm{a}=8$ and $\mathrm{b}=-10$]
We get,
$(x+8)(x-10)=x^{2}+(8+(-10)) x+(8 \times(-10))$
$=\mathrm{x}^{2}+(8-10) \mathrm{x}-80$
$=\mathrm{x}^{2}-2 \mathrm{x}-80$
(iii) $(3 x+4)(3 x-5)$

Solution:
Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $x=3 x, a=4$ and $b=-5$]
We get,
$(3 \mathrm{x}+4)(3 \mathrm{x}-5)=(3 \mathrm{x})^{2}+[4+(-5)] 3 \mathrm{x}+4 \times(-5)$
$=9 \mathrm{x}^{2}+3 \mathrm{x}(4-5)-20$
$=9 x^{2}-3 x-20$
(iv) $\left(y^{2}+3 / 2\right)\left(y^{2}-3 / 2\right)$

Solution:
Using the identity, $(x+y)(x-y)=x^{2}-y^{2}$
[Here, $x=y^{2}$ and $y=3 / 2$]
We get,
$\left(y^{2}+3 / 2\right)\left(y^{2}-3 / 2\right)=\left(y^{2}\right)^{2}-(3 / 2)^{2}$
$=y^{4}-9 / 4$
2. Evaluate the following products without multiplying directly:
(i) $\mathbf{1 0 3 \times 1 0 7}$

Solution:
$103 \times 107=(100+3) \times(100+7)$
Using identity, $\left[(x+a)(x+b)=x^{2}+(a+b) x+a b\right.$
Here, $\mathrm{x}=100$
$\mathrm{a}=3$
$\mathrm{b}=7$
We get, $103 \times 107=(100+3) \times(100+7)$
$=(100)^{2}+(3+7) 100+(3 \times 7)$
$=10000+1000+21$
$=11021$
(ii) 95×96

Solution:
$95 \times 96=(100-5) \times(100-4)$
Using identity, $\left[(x-a)(x-b)=x^{2}-(a+b) x+a b\right.$
Here, $\mathrm{x}=100$
$a=-5$
$\mathrm{b}=-4$
We get, $95 \times 96=(100-5) \times(100-4)$
$=(100)^{2}+100(-5+(-4))+(-5 x-4)$
$=10000-900+20$
$=9120$
(iii) 104×96

Solution:
$104 \times 96=(100+4) \times(100-4)$
Using identity, $\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
Here, $\mathrm{a}=100$
$\mathrm{b}=4$
We get, $104 \times 96=(100+4) \times(100-4)$
$=(100)^{2}-(4)^{2}$
$=10000-16$
$=9984$
3. Factorise the following using appropriate identities:
(i) $9 x^{2}+6 x y+y^{2}$

Solution:
$9 x^{2}+6 x y+y^{2}=(3 x)^{2}+(2 \times 3 x \times y)+y^{2}$
Using identity, $x^{2}+2 x y+y^{2}=(x+y)^{2}$
Here, $\mathrm{x}=3 \mathrm{x}$
$y=y$
$9 x^{2}+6 x y+y^{2}=(3 x)^{2}+(2 \times 3 x \times y)+y^{2}$
$=(3 x+y)^{2}$
$=(3 x+y)(3 x+y)$
(ii) $4 y^{2}-4 y+1$

Solution:
$4 y^{2}-4 y+1=(2 y)^{2}-(2 \times 2 y \times 1)+1$
Using identity, $x^{2}-2 x y+y^{2}=(x-y)^{2}$
Here, $x=2 y$
$\mathrm{y}=1$
$4 y^{2}-4 y+1=(2 y)^{2}-(2 \times 2 y \times 1)+1^{2}$
$=(2 \mathrm{y}-1)^{2}$
$=(2 \mathrm{y}-1)(2 \mathrm{y}-1)$
(iii) $x^{2}-y^{2} / 100$

Solution:
$x^{2}-y^{2} / 100=x^{2}-(y / 10)^{2}$
Using identity, $x^{2}-y^{2}=(x-y)(x+y)$
Here, $\mathrm{x}=\mathrm{x}$
$y=y / 10$
$x^{2}-y^{2} / 100=x^{2}-(y / 10)^{2}$
$=(x-y / 10)(x+y / 10)$
4. Expand each of the following using suitable identities:
(i) $(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(\mathbf{3 a}-7 \mathrm{~b}-\mathrm{c})^{2}$
(v) $(-2 x+5 y-3 z)^{2}$
(vi) $((1 / 4) a-(1 / 2) b+1)^{2}$

Solution:
(i) $(x+2 y+4 z)^{2}$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=x$
$y=2 y$
$\mathrm{z}=4 \mathrm{z}$
$(x+2 y+4 z)^{2}=x^{2}+(2 y)^{2}+(4 z)^{2}+(2 x x \times 2 y)+(2 \times 2 y \times 4 z)+(2 \times 4 z \times x)$
$=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 x z$
(ii) $(2 x-y+z)^{2}$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=2 x$
$y=-y$
$\mathrm{z}=\mathrm{z}$
$(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+z^{2}+(2 \times 2 x \times-y)+(2 \times-y \times z)+(2 \times z \times 2 x)$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$
(iii) $(-2 x+3 y+2 z)^{2}$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=-2 x$
$y=3 y$
$\mathrm{z}=2 \mathrm{z}$
$(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+(2 \times-2 x \times 3 y)+(2 \times 3 y \times 2 z)+(2 \times 2 z \times-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z$
(iv) $(3 a-7 b-c)^{2}$

Solution:
Using identity $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $\mathrm{x}=3 \mathrm{a}$
$y=-7 b$
$\mathrm{z}=-\mathrm{c}$
$(3 a-7 b-c)^{2}=(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+(2 \times 3 a \times-7 b)+(2 x-7 b \times-c)+(2 x-c \times 3 a)$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a$
(v) $(-2 x+5 y-3 z)^{2}$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=-2 x$
$y=5 y$
$\mathrm{z}=-3 \mathrm{z}$
$(-2 \mathrm{x}+5 \mathrm{y}-3 \mathrm{z})^{2}=(-2 \mathrm{x})^{2}+(5 \mathrm{y})^{2}+(-3 \mathrm{z})^{2}+(2 \mathrm{x}-2 \mathrm{x} \times 5 \mathrm{y})+(2 \times 5 \mathrm{y} \times-3 \mathrm{z})+(2 \mathrm{x}-3 \mathrm{z} \times-2 \mathrm{x})$
$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 z x$
(vi) ((1/4)a-(1/2)b+1) ${ }^{2}$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $\mathrm{x}=(1 / 4) \mathrm{a}$
$y=(-1 / 2) b$
$\mathrm{z}=1$

$$
\begin{gathered}
((1 / 4) a-(1 / 2) b+1)^{2}=\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+(1)^{2}+\left(2 \times \frac{1}{4} a \times-\frac{1}{2} b\right)+\left(2 \times-\frac{1}{2} b \times 1\right)+\left(2 \times 1 \times \frac{1}{4} a\right) \\
=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1^{2}-\frac{2}{8} a b-\frac{2}{2} b+\frac{2}{4} a \\
=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a
\end{gathered}
$$

5. Factorise:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{ } 2 x y+4 \sqrt{ } 2 y z-8 x z$

Solution:
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
We can say that, $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+(2 \times 2 x \times 3 y)+(2 \times 3 y \times-4 z)+(2 \times-4 z \times 2 x) \\
& =(2 x+3 y-4 z)^{2} \\
& =(2 x+3 y-4 z)(2 x+3 y-4 z) \\
& \text { (ii) } 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{ } 2 x y+4 \sqrt{ } 2 y z-8 x z
\end{aligned}
$$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
We can say that, $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$
$2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{ } 2 x y+4 \sqrt{ } 2 y z-8 x z$
$=(-\sqrt{ } 2 \mathrm{x})^{2}+(\mathrm{y})^{2}+(2 \sqrt{ } 2 \mathrm{z})^{2}+(2 \mathrm{x}-\sqrt{ } 2 \mathrm{x} \times \mathrm{y})+(2 \times \mathrm{y} \times 2 \sqrt{ } 2 \mathrm{z})+(2 \times 2 \sqrt{ } 2 \times-\sqrt{ } 2 \mathrm{x})$
$=(-\sqrt{2} x+y+2 \sqrt{ } 2 z)^{2}$
$=(-\sqrt{ } 2 x+y+2 \sqrt{ } 2 z)(-\sqrt{ } 2 x+y+2 \sqrt{ } 2 z)$
6. Write the following cubes in expanded form:
(i) $(2 x+1)^{3}$
(ii) $(2 a-3 b)^{3}$
(iii) $((3 / 2) \mathbf{x}+1)^{3}$
(iv) $(x-(2 / 3) y)^{3}$

Solution:
(i) $(2 x+1)^{3}$

Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$(2 x+1)^{3}=(2 x)^{3}+1^{3}+(3 \times 2 x \times 1)(2 x+1)$
$=8 \mathrm{x}^{3}+1+6 \mathrm{x}(2 \mathrm{x}+1)$
$=8 x^{3}+12 x^{2}+6 x+1$
(ii) $(\mathbf{2 a}-\mathbf{3 b})^{3}$

Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(2 \mathrm{a}-3 \mathrm{~b})^{3}=(2 \mathrm{a})^{3}-(3 \mathrm{~b})^{3}-(3 \times 2 \mathrm{a} \times 3 \mathrm{~b})(2 \mathrm{a}-3 \mathrm{~b})$
$=8 a^{3}-27 b^{3}-18 a b(2 a-3 b)$
$=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}$
(iii) $((3 / 2) \mathbf{x}+1)^{3}$

Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$((3 / 2) \mathrm{x}+1)^{3}=((3 / 2) \mathrm{x})^{3}+1^{3}+(3 \times(3 / 2) \mathrm{x} \times 1)((3 / 2) \mathrm{x}+1)$

$$
\begin{aligned}
& =\frac{27}{8} x^{3}+1+\frac{9}{2} x\left(\frac{3}{2} x+1\right) \\
& =\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x \\
& =\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1
\end{aligned}
$$

(iv) $(x-(2 / 3) y)^{3}$

Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right)^{3} & =(\mathrm{x})^{3}-\left(\frac{2}{3} \mathrm{y}\right)^{3}-\left(3 \times \mathrm{x} \times \frac{2}{3} \mathrm{y}\right)\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right) \\
& =(\mathrm{x})^{3}-\frac{8}{27} \mathrm{y}^{3}-2 \mathrm{xy}\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right) \\
& =(\mathrm{x})^{3}-\frac{8}{27} \mathrm{y}^{3}-2 \mathrm{x}^{2} \mathrm{y}+\frac{4}{3} \mathrm{xy}^{2}
\end{aligned}
$$

7. Evaluate the following using suitable identities:
(i) $(99)^{3}$
(ii) $(102)^{3}$
(iii) $(998)^{3}$

Solutions:
(i) $(99)^{3}$

Solution:
We can write 99 as 100-1
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(99)^{3}=(100-1)^{3}$
$=(100)^{3}-1^{3}-(3 \times 100 \times 1)(100-1)$
$=1000000-1-300(100-1)$
$=1000000-1-30000+300$
= 970299
(ii) $(102)^{3}$

Solution:
We can write 102 as $100+2$
Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$(100+2)^{3}=(100)^{3}+2^{3}+(3 \times 100 \times 2)(100+2)$
$=1000000+8+600(100+2)$
$=1000000+8+60000+1200$
$=1061208$
(iii) $(998)^{3}$

Solution:
We can write 99 as 1000-2
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-2^{3}-(3 \times 1000 \times 2)(1000-2)$
$=1000000000-8-6000(1000-2)$
$=1000000000-8-6000000+12000$
$=994011992$
8. Factorise each of the following:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) 27-125a ${ }^{3}-135 a+225 a^{2}$
(iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
(v) $27 \mathrm{p}^{3}-(1 / 216)-(9 / 2) p^{2}+(1 / 4) p$

Solutions:
(i) $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

Solution:
The expression, $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$ can be written as $(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2}$
$8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}=(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2}$
$=(2 \mathrm{a}+\mathrm{b})^{3}$
$=(2 \mathrm{a}+\mathrm{b})(2 \mathrm{a}+\mathrm{b})(2 \mathrm{a}+\mathrm{b})$
Here, the identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$ is used.
(ii) $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

Solution:

The expression, $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$ can be written as $(2 a)^{3}-b^{3}-3(2 a)^{2} b+3(2 a)(b)^{2}$
$8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}=(2 a)^{3}-b^{3}-3(2 a)^{2} b+3(2 a)(b)^{2}$
$=(2 a-b)^{3}$
$=(2 \mathrm{a}-\mathrm{b})(2 \mathrm{a}-\mathrm{b})(2 \mathrm{a}-\mathrm{b})$
Here, the identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ is used.
(iii) 27-125a ${ }^{3}-135 a+225 a^{2}$

Solution:
The expression, $27-125 \mathrm{a}^{3}-135 \mathrm{a}+225 \mathrm{a}^{2}$ can be written as $3^{3}-(5 \mathrm{a})^{3}-3(3)^{2}(5 \mathrm{a})+3(3)(5 \mathrm{a})^{2}$
$27-125 \mathrm{a}^{3}-135 \mathrm{a}+225 \mathrm{a}^{2}=$
$3^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2}$
$=(3-5 \mathrm{a})^{3}$
$=(3-5 \mathrm{a})(3-5 \mathrm{a})(3-5 \mathrm{a})$
Here, the identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ is used.
(iv) $\mathbf{6 4} \mathrm{a}^{3}-\mathbf{2 7} \mathrm{b}^{3}-\mathbf{1 4 4 a} a^{2} b+108 \mathrm{ab}^{2}$

Solution:
The expression, $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$ can be written as $(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2}$

$$
\begin{aligned}
& 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}= \\
& (4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2} \\
& =(4 a-3 b)^{3} \\
& =(4 a-3 b)(4 a-3 b)(4 a-3 b)
\end{aligned}
$$

Here, the identity, $(\mathrm{x}-\mathrm{y})^{3}=\mathrm{x}^{3}-\mathrm{y}^{3}-3 \mathrm{xy}(\mathrm{x}-\mathrm{y})$ is used.
(v) $27 \mathrm{p}^{3}-(\mathbf{1} / 216)-(9 / 2) \mathrm{p}^{2}+(1 / 4) p$

Solution:

The expression, $27 \mathrm{p}^{3}-(1 / 216)-(9 / 2) \mathrm{p}^{2}+(1 / 4) \mathrm{p}$ can be written as
$(3 p)^{3}-(1 / 6)^{3}-(9 / 2) p^{2}+(1 / 4) p=(3 p)^{3}-(1 / 6)^{3}-3(3 p)(1 / 6)(3 p-1 / 6)$
Using $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$27 p^{3}-(1 / 216)-(9 / 2) \mathrm{p}^{2}+(1 / 4) \mathrm{p}=(3 \mathrm{p})^{3}-(1 / 6)^{3}-3(3 \mathrm{p})(1 / 6)(3 \mathrm{p}-1 / 6)$
Taking $\mathrm{x}=3 \mathrm{p}$ and $\mathrm{y}=1 / 6$
$=(3 \mathrm{p}-1 / 6)^{3}$
$=(3 \mathrm{p}-1 / 6)(3 \mathrm{p}-1 / 6)(3 \mathrm{p}-1 / 6)$
9. Verify:
(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $\mathbf{x}^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Solutions:
(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

We know that, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})^{3}-3 \mathrm{xy}(\mathrm{x}+\mathrm{y})$
$\Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right]$
Taking $(x+y)$ common $\Rightarrow x^{3}+y^{3}=(x+y)\left[\left(x^{2}+y^{2}+2 x y\right)-3 x y\right]$
$\Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)$
(ii) $\mathbf{x}^{3}-\mathbf{y}^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

We know that, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$\Rightarrow \mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})^{3}+3 \mathrm{xy}(\mathrm{x}-\mathrm{y})$
$\Rightarrow \mathrm{x}^{3}-\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})\left[(\mathrm{x}-\mathrm{y})^{2}+3 \mathrm{xy}\right]$
Taking $(x+y)$ common $\Rightarrow x^{3}-y^{3}=(x-y)\left[\left(x^{2}+y^{2}-2 x y\right)+3 x y\right]$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{xy}\right)$
10. Factorise each of the following:
(i) $\mathbf{2 7} y^{3}+125 z^{3}$
(ii) $64 m^{3}-343 n^{3}$

Solutions:
(i) $\mathbf{2 7} \mathrm{y}^{3}+\mathbf{1 2 5} \mathrm{z}^{3}$

The expression, $27 \mathrm{y}^{3}+125 \mathrm{z}^{3}$ can be written as $(3 \mathrm{y})^{3}+(5 \mathrm{z})^{3}$
$27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}$
We know that, $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
$27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}$
$=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]$
$=(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)$
(ii) $\mathbf{6 4 m} \mathrm{m}^{3}-\mathbf{3 4 3} \mathrm{n}^{3}$

The expression, $64 \mathrm{~m}^{3}-343 \mathrm{n}^{3}$ can be written as $(4 \mathrm{~m})^{3}-(7 \mathrm{n})^{3}$
$64 m^{3}-343 n^{3}=$
$(4 \mathrm{~m})^{3}-(7 \mathrm{n})^{3}$
We know that, $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
$64 \mathrm{~m}^{3}-343 \mathrm{n}^{3}=(4 \mathrm{~m})^{3}-(7 \mathrm{n})^{3}$
$=(4 \mathrm{~m}-7 \mathrm{n})\left[(4 \mathrm{~m})^{2}+(4 \mathrm{~m})(7 \mathrm{n})+(7 \mathrm{n})^{2}\right]$
$=(4 m-7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)$
11. Factorise: $27 \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-9 \mathrm{xyz}$.

Solution:
The expression $27 x^{3}+y^{3}+z^{3}-9 x y z$ can be written as $(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
$27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
We know that, $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
$=(3 x+y+z)\left[(3 x)^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right]$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)$
12. Verify that:
$\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=(1 / 2)(\mathrm{x}+\mathrm{y}+\mathrm{z})\left[(\mathrm{x}-\mathrm{y})^{2}+(\mathrm{y}-\mathrm{z})^{2}+(\mathrm{z}-\mathrm{x})^{2}\right]$
Solution:
We know that,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=(1 / 2)(\mathrm{x}+\mathrm{y}+\mathrm{z})\left[2\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-\mathrm{xy}-\mathrm{yz}-\mathrm{xz}\right)\right]$
$=(1 / 2)(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 x z\right)$
$=(1 / 2)(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 x z\right)\right]$
$=(1 / 2)(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Solution:
We know that,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
Now, according to the question, let $(x+y+z)=0$,
Then, $x^{3}+y^{3}+z^{3}-3 x y z=(0)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)$
$\Rightarrow \mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-3 \mathrm{xyz}=0$
$\Rightarrow x^{3}+y^{3}+z^{3}=3 x y z$
Hence Proved
14. Without actually calculating the cubes, find the value of each of the following:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Solution:
(i) $(-12)^{3}+(7)^{3}+(5)^{3}$

Let $\mathrm{a}=-12$
$\mathrm{b}=7$
$\mathrm{c}=5$
We know that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$.
Here, $-12+7+5=0$
$(-12)^{3}+(7)^{3}+(5)^{3}=3 x y z$
$=3 \times-12 \times 7 \times 5$
$=-1260$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Solution:
$(28)^{3}+(-15)^{3}+(-13)^{3}$
Let $\mathrm{a}=28$
b $=-15$
$\mathrm{c}=-13$
We know that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$.
Here, $x+y+z=28-15-13=0$
$(28)^{3}+(-15)^{3}+(-13)^{3}=3 x y z$
$=0+3(28)(-15)(-13)$
$=16380$
15. Give possible expressions for the length and breadth of each of the following rectangles, in which their
areas are given:
(i) Area: $\mathbf{2 5 a}{ }^{2}-\mathbf{3 5 a}+\mathbf{1 2}$
(ii) Area: $\mathbf{3 5} \mathbf{y}^{2}+13 y-12$

Solution:
(i) Area: $25 a^{2}-35 a+12$

Using the splitting the middle term method,
We have to find a number whose sum $=-35$ and product $=25 \times 12=300$
We get -15 and -20 as the numbers $[-15+-20=-35$ and $-15 \times-20=300]$
$25 \mathrm{a}^{2}-35 \mathrm{a}+12=25 \mathrm{a}^{2}-15 \mathrm{a}-20 \mathrm{a}+12$
$=5 \mathrm{a}(5 \mathrm{a}-3)-4(5 \mathrm{a}-3)$
$=(5 \mathrm{a}-4)(5 \mathrm{a}-3)$
Possible expression for length $=5 \mathrm{a}-4$
Possible expression for breadth $=5 \mathrm{a}-3$
(ii) Area: $35 y^{2}+13 y-12$

Using the splitting the middle term method,
We have to find a number whose sum $=13$ and product $=35 x-12=420$
We get -15 and 28 as the numbers [$-15+28=13$ and $-15 \times 28=420]$
$35 y^{2}+13 y-12=35 y^{2}-15 y+28 y-12$
$=5 \mathrm{y}(7 \mathrm{y}-3)+4(7 \mathrm{y}-3)$
$=(5 y+4)(7 y-3)$
Possible expression for length $=(5 y+4)$
Possible expression for breadth $=(7 y-3)$
16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume: $3 \mathrm{x}^{2}-12 \mathrm{x}$
(ii) Volume: $12 \mathrm{ky}^{2}+8 \mathrm{ky}-\mathbf{2 0 k}$

Solution:
(i) Volume: $3 x^{2}-12 x$
$3 x^{2}-12 x$ can be written as $3 x(x-4)$ by taking $3 x$ out of both the terms.
Possible expression for length $=3$
Possible expression for breadth $=\mathrm{x}$
Possible expression for height $=(x-4)$
(ii) Volume:
$12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$
$12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$ can be written as $4 \mathrm{k}\left(3 \mathrm{y}^{2}+2 \mathrm{y}-5\right)$ by taking 4 k out of both the terms.
$12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}=4 \mathrm{k}\left(3 \mathrm{y}^{2}+2 \mathrm{y}-5\right)$
[Here, $3 y^{2}+2 y-5$ can be written as $3 y^{2}+5 y-3 y-5$ using splitting the middle term method.]
$=4 \mathrm{k}\left(3 \mathrm{y}^{2}+5 \mathrm{y}-3 \mathrm{y}-5\right)$
$=4 \mathrm{k}[\mathrm{y}(3 \mathrm{y}+5)-1(3 \mathrm{y}+5)]$
$=4 \mathrm{k}(3 \mathrm{y}+5)(\mathrm{y}-1)$
Possible expression for length $=4 \mathrm{k}$
Possible expression for breadth $=(3 y+5)$
Possible expression for height $=(y-1)$

