EXERCISE 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) $x^{2}-2 x-8$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=\mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=(\mathrm{x}-4)(\mathrm{x}+2)$
Therefore, zeroes of polynomial equation $x^{2}-2 x-8$ are $(4,-2)$
Sum of zeroes $=4-2=2=-(-2) / 1=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=4 \times(-2)=-8=-(8) / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
(ii) $4 s^{2}-4 s+1$
$\Rightarrow 4 \mathrm{~s}^{2}-2 \mathrm{~s}-2 \mathrm{~s}+1=2 \mathrm{~s}(2 \mathrm{~s}-1)-1(2 \mathrm{~s}-1)=(2 \mathrm{~s}-1)(2 \mathrm{~s}-1)$
Therefore, zeroes of polynomial equation $4 s^{2}-4 s+1$ are $(1 / 2,1 / 2)$
Sum of zeroes $=(1 / 2)+(1 / 2)=1=-(-4) / 4=-($ Coefficient of $s) /\left(\right.$ Coefficient of $\left.s^{2}\right)$
Product of zeros $=(1 / 2) \times(1 / 2)=1 / 4=($ Constant term $) /\left(\right.$ Coefficient of s$\left.{ }^{2}\right)$
(iii) $6 x^{2}-3-7 x$
$\Rightarrow 6 \mathrm{x}^{2}-7 \mathrm{x}-3=6 \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-3=3 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3)=(3 \mathrm{x}+1)(2 \mathrm{x}-3)$
Therefore, zeroes of polynomial equation $6 x^{2}-3-7 x$ are $(-1 / 3,3 / 2)$
Sum of zeroes $=-(1 / 3)+(3 / 2)=(7 / 6)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=-(1 / 3) \times(3 / 2)=-(3 / 6)=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
(iv) $\mathbf{4} \mathbf{u}^{2}+\mathbf{8 u}$
$\Rightarrow 4 \mathrm{u}(\mathrm{u}+2)$
Therefore, zeroes of polynomial equation $4 u^{2}+8 u$ are $(0,-2)$.
Sum of zeroes $=0+(-2)=-2=-(8 / 4)==-($ Coefficient of $u) /\left(\right.$ Coefficient of $\left.u^{2}\right)$
Product of zeroes $=0 \times-2=0=0 / 4=($ Constant term $) /\left(\right.$ Coefficient of $\left.u^{2}\right)$
(v) $\mathbf{t}^{2}-15$
$\Rightarrow \mathrm{t}^{2}=15$ or $\mathrm{t}= \pm \sqrt{ } 15$
Therefore, zeroes of polynomial equation $t^{2}-15$ are $(\sqrt{ } 15,-\sqrt{ } 15)$
Sum of zeroes $=\sqrt{ } 15+(-\sqrt{ } 15)=0=-(0 / 1)=-($ Coefficient of $t) /\left(\right.$ Coefficient of $\left.t^{2}\right)$
Product of zeroes $=\sqrt{ } 15 \times(-\sqrt{ } 15)=-15=-15 / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.t^{2}\right)$
(vi) $3 x^{2}-x-4$
$\Rightarrow 3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4=\mathrm{x}(3 \mathrm{x}-4)+1(3 \mathrm{x}-4)=(3 \mathrm{x}-4)(\mathrm{x}+1)$
Therefore, zeroes of polynomial equation $3 x^{2}-x-4$ are $(4 / 3,-1)$

Sum of zeroes $=(4 / 3)+(-1)=(1 / 3)=-(-1 / 3)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=(4 / 3) \times(-1)=(-4 / 3)=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes, respectively.
(i) $1 / 4,-1$

Solution:

From the formulas of sum and product of zeroes, we know,
Sum of zeroes $=\alpha+\beta$
Product of zeroes $=\alpha \beta$
Sum of zeroes $=\alpha+\beta=1 / 4$
Product of zeroes $=\alpha \beta=-1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\mathrm{x}^{2}-(1 / 4) \mathrm{x}+(-1)=0$
$4 \mathrm{x}^{2}-\mathrm{x}-4=0$
Thus, $4 x^{2}-x-4$ is the quadratic polynomial.
(ii) $\sqrt{ } 2,1 / 3$

Solution:

Sum of zeroes $=\alpha+\beta=\sqrt{ } 2$
Product of zeroes $=\alpha \beta=1 / 3$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(\sqrt{ } 2) x+(1 / 3)=0$
$3 x^{2}-3 \sqrt{ } 2 x+1=0$
Thus, $3 x^{2}-3 \sqrt{ } 2 x+1$ is the quadratic polynomial.
(iii) $0, \sqrt{ } 5$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=0$
Product of zeroes $=\alpha \beta=\sqrt{ } 5$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly
as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(0) x+\sqrt{ } 5=0$

Thus, $x^{2}+\sqrt{ } 5$ is the quadratic polynomial.
(iv) 1,1

Solution:
Given,
Sum of zeroes $=\alpha+\beta=1$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$\mathrm{x}^{2}-\mathrm{x}+1=0$
Thus, $\mathrm{x}^{2}-\mathrm{x}+1$ is the quadratic polynomial.
(v) $-1 / 4,1 / 4$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=-1 / 4$
Product of zeroes $=\alpha \beta=1 / 4$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(-1 / 4) x+(1 / 4)=0$
$4 x^{2}+x+1=0$
Thus, $4 x^{2}+x+1$ is the quadratic polynomial.
(vi) 4,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=4$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-4 x+1=0$
Thus, $x^{2}-4 x+1$ is the quadratic polynomial.

