EXERCISE 2.3

1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$

Solution:

Given,
Dividend $=p(x)=x^{3}-3 x^{2}+5 x-3$
Divisor $=g(x)=x^{2}-2$

$$
\begin{aligned}
& x \quad-3 \\
& x ^ { 2 } - 2 \longdiv { x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 } \\
& \begin{array}{cccc}
- & & \\
x^{3} & +0 x^{2} & -2 x & \\
\hline & -3 x^{2} & +7 x & -3
\end{array} \\
& \begin{array}{rrr}
-3 x^{2} & +0 x & +6 \\
7 x & -9
\end{array}
\end{aligned}
$$

Therefore, upon division we get,
Quotient $=x-3$
Remainder $=7 \mathrm{x}-9$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$

Solution:
Given,
Dividend $=p(x)=x^{4}-3 x^{2}+4 x+5$
Divisor $=g(x)=x^{2}+1-x$

$$
\begin{aligned}
& \begin{array}{ll}
x^{2} & +x
\end{array}-3 \\
& x ^ { 2 } - x + 1 \quad \longdiv { x ^ { 4 } + 0 x ^ { 3 } - 3 x ^ { 2 } + 4 x + 5 } \\
& \text { - } \\
& \begin{array}{rrrrr}
x^{4} & -x^{3} & +x^{2} & & \\
\hline & x^{3} & -4 x^{2} & +4 x & +5
\end{array} \\
& \begin{array}{ccc}
x^{3} & -x^{2} & +x \\
\hline & -3 x^{2} & +3 x
\end{array} \\
& \begin{array}{rr}
-3 x^{2}+3 x \quad-3 \\
\hline 8
\end{array}
\end{aligned}
$$

Therefore, upon division we get,
Quotient $=\mathrm{x}^{2}+\mathrm{x}-3$
Remainder $=8$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Solution:

Given,
Dividend $=p(x)=x^{4}-5 x+6=x^{4}+0 x^{2}-5 x+6$
Divisor $=g(x)=2-x^{2}=-x^{2}+2$

$$
\begin{array}{rlrl}
-x^{2}+2 & \begin{array}{r}
-x^{2}
\end{array}-2 \\
& \begin{array}{rrrr}
x^{4} & +0 x^{3} & +0 x^{2} & -5 x
\end{array}+6 \\
& \begin{array}{rrrr}
x^{4} & +0 x^{3} & -2 x^{2} & \\
\hline & & 2 x^{2} & -5 x \\
& - & & \\
& & 2 x^{2} & +0 x
\end{array} & -4 \\
\hline
\end{array}
$$

Therefore, upon division we get,

Quotient $=-\mathrm{x}^{2}-2$
Remainder $=-5 \mathrm{x}+10$
2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $\mathrm{t}^{2}-3,2 \mathrm{t}^{4}+3 \mathrm{t}^{3}-2 \mathrm{t}^{2}-9 \mathrm{t}-12$

Solutions:

Given,
First polynomial $=t^{2}-3$
Second polynomial $=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

$$
\begin{aligned}
& \begin{array}{lllll}
& \begin{array}{llll}
2 t^{2} & +3 t & +4 \\
t^{2} & -3 & \begin{array}{|cccc}
2 t^{4} & +3 t^{3} & -2 t^{2} & -9 t
\end{array}-12
\end{array},
\end{array} \\
& \begin{array}{lrlll}
- & & & & \\
2 t^{4} & +0 t^{3} & -6 t^{2} & & \\
\hline & 3 t^{3} & +4 t^{2} & -9 t & -12
\end{array} \\
& \text { - } \\
& \begin{array}{rrrr}
3 t^{3} & +0 t^{2} & -9 t & \\
\hline & 4 t^{2} & +0 t & -12
\end{array} \\
& \begin{array}{rrr}
4 t^{2} & +0 t-12 \\
0
\end{array}
\end{aligned}
$$

As we can see, the remainder is left as 0 . Therefore, we say that, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

Solutions:

Given,
First polynomial $=x^{2}+3 x+1$
Second polynomial $=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

$$
\begin{aligned}
& x^{2}+3 x+1 \quad \begin{array}{|cc|}
& 3 x^{2}-4 x+2 \\
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2
\end{array} \\
& \text { - } \\
& \begin{array}{llll}
3 x^{4} & +9 x^{3} & +3 x^{2} & \\
\hline & -4 x^{3} & -10 x^{2} & +2 x
\end{array} \\
& \begin{array}{rrr}
-4 x^{3} & -12 x^{2} & -4 x \\
\hline & 2 x^{2}+6 x+2
\end{array} \\
& \begin{array}{r}
2 x^{2}+6 x+2 \\
\hline 0
\end{array}
\end{aligned}
$$

As we can see, the remainder is left as 0 . Therefore, we say that, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$.
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Solutions:

Given,
First polynomial $=x^{3}-3 x+1$
Second polynomial $=x^{5}-4 x^{3}+x^{2}+3 x+1$

$$
\begin{aligned}
& -1 \\
& x ^ { 3 } - 3 x + 1 \quad \longdiv { x ^ { 5 } + 0 x ^ { 4 } - 4 x ^ { 3 } + x ^ { 2 } + 3 x + 1 } \\
& \text { - } \\
& \begin{array}{rrrr}
x^{5}+0 x^{4} & -3 x^{3} & +x^{2} \\
\hline & -x^{3} & +0 x^{2} & +3 x
\end{array}+1 \\
& \text { - } \\
& \begin{array}{llll}
-x^{3} & +0 x^{2} & +3 x & -1
\end{array}
\end{aligned}
$$

As we can see, the remainder is not equal to 0 . Therefore, we say that, $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.
3. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$.

Solutions:

Since this is a polynomial equation of degree 4 , hence there will be total 4 roots.
$\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$ are zeroes of polynomial $f(x)$.
$\therefore(\mathrm{x}-\sqrt{ }(5 / 3))\left(\mathrm{x}+\sqrt{ }(5 / 3)=\mathrm{X}^{2}-(5 / 3)=0\right.$
$\left(\mathbf{3} \mathbf{x}^{2}-\mathbf{5}\right)=\mathbf{0}$, is a factor of given polynomial $\mathrm{f}(\mathrm{x})$.
Now, when we will divide $f(x)$ by $\left(3 x^{2}-5\right)$ the quotient obtained will also be a factor of $f(x)$ and the remainder will be 0 .

$3 x^{2}-5$	$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$		
	$3 x^{4}$	$-5 x^{2}$	
		(+)	
		$x^{3}+3 x^{2}$	2 $-10 x-5$
		x^{3}	$-10 x$
			(-)
		$3 x^{2}$	-5
		$3 x^{2}$	-5
		$(-)$	(+)
			0

Therefore, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)$
Now, on further factorizing $\left(x^{2}+2 x+1\right)$ we get,
$\mathbf{x}^{2}+\mathbf{2 x}+\mathbf{1}=\mathrm{x}^{2}+\mathrm{x}+\mathrm{x}+1=0$
$x(x+1)+1(x+1)=0$
$(x+1)(x+1)=0$
So, its zeroes are given by: $\mathbf{x}=\mathbf{- 1}$ and $\mathbf{x}=-\mathbf{1}$.
Therefore, all four zeroes of given polynomial equation are:
$\sqrt{ }(5 / 3),-\sqrt{ }(5 / 3),-1$ and -1 .
Hence, is the answer.
4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $\mathbf{g}(\mathbf{x})$.

Solution:

Given,
Dividend, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2$
Quotient $=x-2$
Remainder $=-2 x+4$
We have to find the value of Divisor, $\mathrm{g}(\mathrm{x})=$?
As we know,
Dividend $=$ Divisor \times Quotient + Remainder
$\therefore \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)+(-2 \mathrm{x}+4)$
$\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2-(-2 \mathrm{x}+4)=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)$
Therefore, $g(x) \times(x-2)=x^{3}-3 x^{2}+3 x-2$
Now, for finding $g(x)$ we will divide $x^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2$ with ($\mathrm{x}-2$)

Therefore, $\mathbf{g}(\mathbf{x})=\left(\mathbf{x}^{2}-\mathbf{x}+\mathbf{1}\right)$
5. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} \mathbf{q}(\mathbf{x})=\operatorname{deg} \mathbf{r}(\mathbf{x})$
(iii) $\operatorname{deg} \mathbf{r}(\mathbf{x})=\mathbf{0}$

Solutions:

According to the division algorithm, dividend $\mathrm{p}(\mathrm{x})$ and divisor $\mathrm{g}(\mathrm{x})$ are two polynomials, where $\mathrm{g}(\mathrm{x}) \neq 0$. Then we can find the value of quotient $\mathrm{q}(\mathrm{x})$ and remainder $\mathrm{r}(\mathrm{x})$, with the help of below given formula;

Dividend $=$ Divisor \times Quotient + Remainder
$\therefore \mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$

Where $\mathrm{r}(\mathrm{x})=0$ or degree of $\mathrm{r}(\mathrm{x})<$ degree of $\mathrm{g}(\mathrm{x})$.
Now let us proof the three given cases as per division algorithm by taking examples for each.
(i) $\operatorname{deg} \mathbf{p}(\mathbf{x})=\operatorname{deg} q(\mathbf{x})$

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term.
Let us take an example, $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}+3 \mathrm{x}+3$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=3$.
So, $\left(3 x^{2}+3 x+3\right) / 3=x^{2}+x+1=q(x)$
Thus, you can see, the degree of quotient $q(x)=2$, which also equal to the degree of dividend $p(x)$.
Hence, division algorithm is satisfied here.
(ii) $\operatorname{deg} \mathbf{q}(\mathbf{x})=\operatorname{deg} \mathbf{r}(\mathbf{x})$

Let us take an example, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+3$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=\mathrm{x}-1$.
So, $\mathrm{x}^{2}+3=(\mathrm{x}-1) \times(\mathrm{x})+(\mathrm{x}+3)$
Hence, quotient $q(x)=x$
Also, remainder $\mathrm{r}(\mathrm{x})=\mathrm{x}+3$
Thus, you can see, the degree of quotient $\mathrm{q}(\mathrm{x})=1$, which is also equal to the degree of remainder $\mathrm{r}(\mathrm{x})$.
Hence, division algorithm is satisfied here.
(iii) $\operatorname{deg} r(x)=0$

The degree of remainder is 0 only when the remainder left after division algorithm is constant.
Let us take an example, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=\mathrm{x}$.
So, $\mathrm{x}^{2}+1=(\mathrm{x}) \times(\mathrm{x})+1$
Hence, quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}$
And, remainder $\mathrm{r}(\mathrm{x})=1$
Clearly, the degree of remainder here is 0 .
Hence, division algorithm is satisfied here.

