

EXERCISE 2.3

PAGE: 36

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3-3x^2+5x-3$$
, $g(x) = x^2-2$

Solution:

Given,

Dividend =
$$p(x) = x^3 - 3x^2 + 5x - 3$$

Divisor =
$$g(x) = x^2 - 2$$

Therefore, upon division we get,

Quotient = x-3

Remainder = 7x-9

(ii)
$$p(x) = x^4-3x^2+4x+5$$
, $g(x) = x^2+1-x$

Solution:

Given,

Dividend =
$$p(x) = x^4 - 3x^2 + 4x + 5$$

Divisor =
$$g(x) = x^2 + 1-x$$

Therefore, upon division we get,

Quotient = $x^2 + x - 3$

Remainder = 8

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Solution:

Given,

Dividend =
$$p(x) = x^4 - 5x + 6 = x^4 + 0x^2 - 5x + 6$$

Divisor =
$$g(x) = 2-x^2 = -x^2+2$$

Therefore, upon division we get,

Quotient = $-x^2-2$

Remainder = -5x + 10

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2$$
-3, $2t^4$ +3 t^3 -2 t^2 -9 t -12

Solutions:

Given,

First polynomial = t^2 -3

Second polynomial = $2t^4+3t^3-2t^2-9t-12$

As we can see, the remainder is left as 0. Therefore, we say that, t^2 -3 is a factor of $2t^4+3t^3-2t^2-9t-12$.

$$(ii)x^2+3x+1$$
, $3x^4+5x^3-7x^2+2x+2$

Solutions:

Given,

First polynomial = x^2+3x+1

Second polynomial = $3x^4+5x^3-7x^2+2x+2$

As we can see, the remainder is left as 0. Therefore, we say that, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

(iii) x^3-3x+1 , $x^5-4x^3+x^2+3x+1$

Solutions:

Given,

First polynomial = x^3-3x+1

Second polynomial = $x^5-4x^3+x^2+3x+1$

As we can see, the remainder is not equal to 0. Therefore, we say that, x^3-3x+1 is not a factor of $x^5-4x^3+x^2+3x+1$.

3. Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes are $\sqrt{(5/3)}$ and $-\sqrt{(5/3)}$.

Solutions:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

 $\sqrt{(5/3)}$ and $-\sqrt{(5/3)}$ are zeroes of polynomial f(x).

∴
$$(x - \sqrt{5/3})(x + \sqrt{5/3}) = x^2 - (5/3) = 0$$

 $(3x^2-5)=0$, is a factor of given polynomial f(x).

Now, when we will divide f(x) by $(3x^2-5)$ the quotient obtained will also be a factor of f(x) and the remainder will be 0.

Therefore, $3x^4+6x^3-2x^2-10x-5=(3x^2-5)(x^2+2x+1)$

Now, on further factorizing (x^2+2x+1) we get,

$$x^2+2x+1 = x^2+x+x+1 = 0$$

$$x(x+1)+1(x+1)=0$$

$$(x+1)(x+1) = 0$$

So, its zeroes are given by: x = -1 and x = -1.

Therefore, all four zeroes of given polynomial equation are:

$$\sqrt{(5/3)}$$
, $\sqrt{(5/3)}$, -1 and -1 .

Hence, is the answer.

4. On dividing x^3-3x^2+x+2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

Solution:

Given,

Dividend, $p(x) = x^3 - 3x^2 + x + 2$

Quotient = x-2

Remainder = -2x+4

We have to find the value of Divisor, g(x) = ?

As we know,

 $Dividend = Divisor \times Quotient + Remainder$

$$x^3-3x^2+x+2=g(x)\times(x-2)+(-2x+4)$$

$$x^3-3x^2+x+2-(-2x+4) = g(x)\times(x-2)$$

Therefore, $g(x) \times (x-2) = x^3-3x^2+3x-2$

Now, for finding g(x) we will divide x^3-3x^2+3x-2 with (x-2)

$$x^{2} - x + 1$$

$$x - 2$$

$$x^{3} - 3x^{2} + 3x - 2$$

$$x^{3} - 2x^{2}$$

$$(\cdot) (\cdot)$$

$$- x^{2} + 3x - 2$$

$$- x^{2} + 2x$$

$$(\cdot) (\cdot)$$

$$x - 2$$

$$x - 2$$

$$(\cdot) (\cdot)$$

$$0$$

Therefore, $g(x) = (x^2-x+1)$

5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

- (i) $\deg p(x) = \deg q(x)$
- (ii) deg q(x) = deg r(x)
- (iii) deg r(x) = 0

Solutions:

According to the division algorithm, dividend p(x) and divisor g(x) are two polynomials, where $g(x)\neq 0$. Then we can find the value of quotient q(x) and remainder r(x), with the help of below given formula;

 $Dividend = Divisor \times Quotient + Remainder$

$$\therefore p(x) = g(x) \times q(x) + r(x)$$

Where r(x) = 0 or degree of r(x) < degree of <math>g(x).

Now let us proof the three given cases as per division algorithm by taking examples for each.

(i) deg p(x) = deg q(x)

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term.

Let us take an example, $p(x) = 3x^2 + 3x + 3$ is a polynomial to be divided by g(x) = 3.

So,
$$(3x^2+3x+3)/3 = x^2+x+1 = q(x)$$

Thus, you can see, the degree of quotient q(x) = 2, which also equal to the degree of dividend p(x).

Hence, division algorithm is satisfied here.

(ii) $\deg q(x) = \deg r(x)$

Let us take an example, $p(x) = x^2 + 3$ is a polynomial to be divided by g(x) = x - 1.

So,
$$x^2 + 3 = (x - 1) \times (x) + (x + 3)$$

Hence, quotient q(x) = x

Also, remainder r(x) = x + 3

Thus, you can see, the degree of quotient q(x) = 1, which is also equal to the degree of remainder r(x).

Hence, division algorithm is satisfied here.

(iii) deg r(x) = 0

The degree of remainder is 0 only when the remainder left after division algorithm is constant.

Let us take an example, $p(x) = x^2 + 1$ is a polynomial to be divided by g(x) = x.

So,
$$x^2 + 1 = (x) \times (x) + 1$$

Hence, quotient q(x) = x

And, remainder r(x) = 1

Clearly, the degree of remainder here is 0.

Hence, division algorithm is satisfied here.