EXERCISE 2.4

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2 ;-1 / 2,1,-2$

Solution:

Given, $p(x)=2 x^{3}+x^{2}-5 x+2$
And zeroes for $\mathrm{p}(\mathrm{x})$ are $=1 / 2,1,-2$
$\therefore \mathrm{p}(1 / 2)=2(1 / 2)^{3}+(1 / 2)^{2}-5(1 / 2)+2=(1 / 4)+(1 / 4)-(5 / 2)+2=0$
$\mathrm{p}(1)=2(1)^{3}+(1)^{2}-5(1)+2=0$
$\mathrm{p}(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2=0$
Hence, proved $1 / 2,1,-2$ are the zeroes of $2 x^{3}+x^{2}-5 x+2$.
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}=2 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2$
$a=2, b=1, c=-5$ and $d=2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$, then;
$\alpha+\beta+\gamma=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=1 / 2+1+(-2)=-1 / 2=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=(1 / 2 \times 1)+(1 \times-2)+(-2 \times 1 / 2)=-5 / 2=c / a$
$\alpha \beta \gamma=1 / 2 \times 1 \times(-2)=-2 / 2=-\mathrm{d} / \mathrm{a}$
Hence, the relationship between the zeroes and the coefficients are satisfied.
(ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

Solution:

Given, $p(x)=x^{3}-4 x^{2}+5 x-2$
And zeroes for $\mathrm{p}(\mathrm{x})$ are $2,1,1$.
$\therefore \mathrm{p}(2)=2^{3}-4(2)^{2}+5(2)-2=0$
$p(1)=1^{3}-\left(4 \times 1^{2}\right)+(5 \times 1)-2=0$
Hence proved, 2, 1, 1 are the zeroes of $x^{3}-4 x^{2}+5 x-2$
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}=\mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{x}-2$
$\mathrm{a}=1, \mathrm{~b}=-4, \mathrm{c}=5$ and $\mathrm{d}=-2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $a x^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, then;
$\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\mathrm{c} / \mathrm{a}$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=2+1+1=4=-(-4) / 1=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=2 \times 1+1 \times 1+1 \times 2=5=5 / 1=\mathrm{c} / \mathrm{a}$
$\alpha \beta \gamma=2 \times 1 \times 1=2=-(-2) / 1=-d / a$
Hence, the relationship between the zeroes and the coefficients are satisfied.
2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solution:

Let us consider the cubic polynomial is $a x^{3}+b x^{2}+c x+d$ and the values of the zeroes of the polynomials be α, β, γ.
As per the given question,
$\alpha+\beta+\gamma=-b / a=2 / 1$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a=-7 / 1$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}=-14 / 1$
Thus, from above three expressions we get the values of coefficient of polynomial.
$\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=-7, \mathrm{~d}=14$
Hence, the cubic polynomial is $\mathrm{x}^{3}-2 \mathrm{x}^{2}-7 \mathrm{x}+14$
3. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.

Solution:

We are given with the polynomial here,
$p(x)=x^{3}-3 x^{2}+x+1$
And zeroes are given as $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{px}^{3}+\mathrm{qx}^{2}+\mathrm{rx}+\mathrm{s}=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+1$
$\mathrm{p}=1, \mathrm{q}=-3, \mathrm{r}=1$ and $\mathrm{s}=1$
Sum of zeroes $=a-b+a+a+b$
$-\mathrm{q} / \mathrm{p}=3 \mathrm{a}$
Putting the values q and p .
$-(-3) / 1=3 \mathrm{a}$
$\mathrm{a}=1$
Thus, the zeroes are $1-\mathrm{b}, 1,1+\mathrm{b}$.
Now, product of zeroes $=1(1-b)(1+b)$
$-\mathrm{s} / \mathrm{p}=1-\mathrm{b}^{2}$
$-1 / 1=1-b^{2}$
$b^{2}=1+1=2$
$b= \pm \sqrt{ } 2$
Hence, $1-\sqrt{ } 2,1,1+\sqrt{ } 2$ are the zeroes of $x^{3}-3 x^{2}+x+1$.
4. If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{ } 3$, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4 , hence there will be total 4 roots.
Let $f(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$
Since $2+\sqrt{3}$ and 2- $\sqrt{3}$ are zeroes of given polynomial $f(x)$.
$\therefore[x-(2+\sqrt{3})][x-(2-\sqrt{ } 3)]=0$
$(x-2-\sqrt{3})(x-2+\sqrt{ } 3)=0$
On multiplying the above equation we get,
$x^{2}-4 x+1$, this is a factor of a given polynomial $f(x)$.
Now, if we will divide $f(x)$ by $g(x)$, the quotient will also be a factor of $f(x)$ and the remainder will be 0 .

So, $x^{4}-6 x^{3}-26 x^{2}+138 x-35=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)$

Now, on further factorizing ($x^{2}-2 x-35$) we get,
$x^{2}-(7-5) x-35=x^{2}-7 x+5 x+35=0$
$x(x-7)+5(x-7)=0$
$(x+5)(x-7)=0$
So, its zeroes are given by:
$\mathrm{x}=-5$ and $\mathrm{x}=7$.
Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{ } \mathbf{3}, 2-\sqrt{ } \mathbf{3},-5$ and 7 .
Q.5: If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.

Solution:

Let's divide $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+k$.

$$
\begin{aligned}
&\left.x^{2}-2 x+k\right) x^{4}-6 x^{3}+16 x^{2}-25 x+10\left(x^{2}-4 x+(8-k)\right. \\
& \frac{x^{4}-2 x^{3}+k x^{2}}{-4 x^{3}+(16-k) x^{2}-25 x} \\
& \begin{array}{l}
-4 x^{3}+8 x^{2}-4 k x \\
+\quad-\quad+ \\
(8-k) x^{2}+(4 k-25) x+10 \\
(4 k-25+16-2 k) x+[10-k(8-k)]
\end{array}
\end{aligned}
$$

Given that the remainder of the polynomial division is $\mathrm{x}+\mathrm{a}$.
$(4 \mathrm{k}-25+16-2 \mathrm{k}) \mathrm{x}+[10-\mathrm{k}(8-\mathrm{k})]=\mathrm{x}+\mathrm{a}$
$(2 k-9) x+\left(10-8 k+k^{2}\right)=x+a$
Comparing the coefficients of the above equation, we get;
$2 \mathrm{k}-9=1$
$2 \mathrm{k}=9+1=10$
$\mathrm{k}=10 / 2=5$
And
$10-8 \mathrm{k}+\mathrm{k}^{2}=\mathrm{a}$
$10-8(5)+(5)^{2}=\mathrm{a}[$ since $\mathrm{k}=5]$

$$
10-40+25=\mathrm{a}
$$

$a=-5$
Therefore, $\mathrm{k}=5$ and $\mathrm{a}=-5$.

