B BYJU'S

EXERCISE 2.4

PAGE: 36

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i) $2x^3+x^2-5x+2$; -1/2, 1, -2

Solution:

Given, $p(x) = 2x^3 + x^2 - 5x + 2$

And zeroes for p(x) are = 1/2, 1, -2

 $\therefore p(1/2) = 2(1/2)^3 + (1/2)^2 - 5(1/2) + 2 = (1/4) + (1/4) - (5/2) + 2 = 0$

 $p(1) = 2(1)^{3} + (1)^{2} - 5(1) + 2 = 0$

 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2 = 0$

Hence, proved 1/2, 1, -2 are the zeroes of $2x^3+x^2-5x+2$.

Now, comparing the given polynomial with general expression, we get;

 $\therefore ax^{3}+bx^{2}+cx+d = 2x^{3}+x^{2}-5x+2$

a=2, b=1, c= -5 and d = 2

As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then;

 $\alpha + \beta + \gamma = -b/a$

 $\alpha\beta+\beta\gamma+\gamma\alpha=c/a$

 $\alpha \beta \gamma = -d/a.$

Therefore, putting the values of zeroes of the polynomial,

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = -\frac{b}{a}$$

 $\alpha\beta+\beta\gamma+\gamma\alpha = (1/2\times1)+(1\times-2)+(-2\times1/2) = -5/2 = c/a$

$$\alpha \beta \gamma = \frac{1}{2} \times 1 \times (-2) = -\frac{2}{2} = -\frac{d}{a}$$

Hence, the relationship between the zeroes and the coefficients are satisfied.

(ii) x³-4x²+5x-2 ;2, 1, 1

Solution:

Given, $p(x) = x^{3}-4x^{2}+5x-2$

And zeroes for p(x) are 2,1,1.

 $\therefore p(2) = 2^{3} - 4(2)^{2} + 5(2) - 2 = 0$

 $p(1) = 1^{3} - (4 \times 1^{2}) + (5 \times 1) - 2 = 0$

Hence proved, 2, 1, 1 are the zeroes of x^3-4x^2+5x-2

Now, comparing the given polynomial with general expression, we get;

NCERT Solutions for Class 10 Chapter 2 – Polynomials

 \therefore ax³+bx²+cx+d = x³-4x²+5x-2

$$a = 1, b = -4, c = 5 and d = -2$$

As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then;

 $\alpha+\beta+\gamma=-b/a$

 $\alpha\beta+\beta\gamma+\gamma\alpha=c/a$

 $\alpha \ \beta \ \gamma = - \ d/a.$

Therefore, putting the values of zeroes of the polynomial,

 $\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -(-4)/1 = -b/a$

 $\alpha\beta{+}\beta\gamma{+}\gamma\alpha=2{\times}1{+}1{\times}1{+}1{\times}2=5=5/1{=}c/a$

 $\alpha\beta\gamma = 2 \times 1 \times 1 = 2 = -(-2)/1 = -d/a$

Hence, the relationship between the zeroes and the coefficients are satisfied.

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Solution:

Let us consider the cubic polynomial is ax^3+bx^2+cx+d and the values of the zeroes of the polynomials be α , β , γ .

As per the given question,

 $\alpha + \beta + \gamma = -b/a = 2/1$

 $\alpha\beta + \beta\gamma + \gamma\alpha = c/a = -7/1$

 $\alpha \beta \gamma = -d/a = -14/1$

Thus, from above three expressions we get the values of coefficient of polynomial.

$$a = 1, b = -2, c = -7, d = 14$$

Hence, the cubic polynomial is $x^3-2x^2-7x+14$

3. If the zeroes of the polynomial x^3-3x^2+x+1 are a - b, a, a + b, find a and b.

Solution:

We are given with the polynomial here,

 $p(x) = x^3 - 3x^2 + x + 1$

And zeroes are given as a - b, a, a + b

Now, comparing the given polynomial with general expression, we get;

 \therefore px³+qx²+rx+s = x³-3x²+x+1

$$p = 1, q = -3, r = 1 and s = 1$$

Sum of zeroes
$$= a - b + a + a + b$$

-q/p = 3a

Putting the values q and p.

-(-3)/1 = 3a

Thus, the zeroes are 1-b, 1, 1+b.

```
Now, product of zeroes = 1(1-b)(1+b)
```

 $-s/p = 1-b^2$

 $-1/1 = 1-b^2$

 $b^2 = 1 + 1 = 2$

 $b = \pm \sqrt{2}$

Hence, $1-\sqrt{2}$, 1, $1+\sqrt{2}$ are the zeroes of x^3-3x^2+x+1 .

4. If two zeroes of the polynomial x⁴-6x³-26x²+138x-35 are $2 \pm \sqrt{3}$, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

Let
$$f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$$

Since $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of given polynomial f(x).

∴
$$[x-(2+\sqrt{3})] [x-(2-\sqrt{3})] = 0$$

$$(x-2-\sqrt{3})(x-2+\sqrt{3})=0$$

On multiplying the above equation we get,

 x^2-4x+1 , this is a factor of a given polynomial f(x).

Now, if we will divide f(x) by g(x), the quotient will also be a factor of f(x) and the remainder will be 0.

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1$$

$$x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$(\cdot) (+) (\cdot)$$

$$-2x^{3} - 27x^{2} + 138x - 35$$

$$-2x^{3} + 8x^{2} - 2x$$

$$(+) (\cdot) (+)$$

$$-35x^{2} + 140x - 35$$

$$-35x^{2} + 140x - 35$$

$$(+) (-) (+)$$

$$0$$

So, $x^4-6x^3-26x^2+138x-35 = (x^2-4x+1)(x^2-2x-35)$

Now, on further factorizing $(x^2-2x-35)$ we get,

$$x^{2}-(7-5)x - 35 = x^{2}-7x + 5x + 35 = 0$$

$$x(x-7)+5(x-7)=0$$

$$(x+5)(x-7) = 0$$

So, its zeroes are given by:

x = -5 and x = 7.

Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{3}$, $2-\sqrt{3}$, -5 and 7.

Q.5: If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Solution:

Let's divide $x^4 - 6x^3 + 16x^2 - 25x + 10$ by $x^2 - 2x + k$.

Given that the remainder of the polynomial division is x + a.

(4k - 25 + 16 - 2k)x + [10 - k(8 - k)] = x + a

 $(2k-9)x + (10-8k+k^2) = x + a$

Comparing the coefficients of the above equation, we get;

2k - 9 = 1

2k = 9 + 1 = 10

k = 10/2 = 5

And

 $10 - 8k + k^2 = a$

 $10 - 8(5) + (5)^2 = a$ [since k = 5]

NCERT Solutions for Class 10 Chapter 2 – Polynomials

10 - 40 + 25 = a

a = -5

Therefore, k = 5 and a = -5.

