EXERCISE 1.3

1. Prove that $\sqrt{ } 5$ is irrational.

Solutions: Let us assume, that $\sqrt{ } 5$ is rational number.
i.e. $\sqrt{ } 5=x / y$ (where, x and y are co-primes)
$y \sqrt{ } 5=x$
Squaring both the sides, we get,
$(y \sqrt{ } 5)^{2}=x^{2}$
$\Rightarrow 5 y^{2}=x^{2}$.
Thus, x^{2} is divisible by 5 , so x is also divisible by 5 .
Let us say, $x=5 k$, for some value of k and substituting the value of x in equation (1), we get,
$5 y^{2}=(5 k)^{2}$
$\Rightarrow \mathrm{y}^{2}=5 \mathrm{k}^{2}$
is divisible by 5 it means y is divisible by 5 .
Clearly, x and y are not co-primes. Thus, our assumption about $\sqrt{5}$ is rational is incorrect.
Hence, $\sqrt{ } 5$ is an irrational number.
2. Prove that $3+2 \sqrt{ } \mathbf{5}+$ is irrational.

Solutions: Let us assume $3+2 \sqrt{ } 5$ is rational.
Then we can find co-prime x and $y(y \neq 0)$ such that $3+2 \sqrt{ } 5=x / y$
Rearranging, we get,
$2 \sqrt{5}=\frac{x}{y}-3$
$\sqrt{5}=\frac{1}{2}\left(\frac{x}{y}-3\right)$
Since, x and y are integers, thus,
$\frac{1}{2}\left(\frac{x}{y}-3\right)$ is a rational number.

Therefore, $\sqrt{ } 5$ is also a rational number. But this contradicts the fact that $\sqrt{ } 5$ is irrational.
So, we conclude that $3+2 \sqrt{5}$ is irrational.
3. Prove that the following are irrationals:
(i) $1 / \sqrt{ } 2$
(ii) $7 \sqrt{ } 5$
(iii) $6+\sqrt{ } 2$

Solutions:

(i) $1 / \sqrt{ } 2$

Let us assume $1 / \sqrt{ } 2$ is rational.
Then we can find co-prime x and $y(y \neq 0)$ such that $1 / \sqrt{2}=x / y$
Rearranging, we get,
$\sqrt{2}=y / x$
Since, x and y are integers, thus, $\sqrt{ } 2$ is a rational number, which contradicts the fact that $\sqrt{ } 2$ is irrational.
Hence, we can conclude that $1 / \sqrt{ } 2$ is irrational.
(ii) $7 \sqrt{ } 5$

Let us assume $7 \sqrt{ } 5$ is a rational number.
Then we can find co-prime a and $b(b \neq 0)$ such that $7 \sqrt{ } 5=x / y$
Rearranging, we get,
$\sqrt{ } 5=x / 7 y$
Since, x and y are integers, thus, $\sqrt{ } 5$ is a rational number, which contradicts the fact that $\sqrt{ } 5$ is irrational.
Hence, we can conclude that $7 \sqrt{ } 5$ is irrational.
(iii) $6+\sqrt{ } 2$

Let us assume $6+\sqrt{ } 2$ is a rational number.
Then we can find co-primes x and $y(y \neq 0)$ such that $6+\sqrt{ } 2=x / y$.
Rearranging, we get,
$\sqrt{2}=(x / y)-6$
Since, x and y are integers, thus $(x / y)-6$ is a rational number and therefore, $\sqrt{ } 2$ is rational. This contradicts the fact that $\sqrt{2}$ is an irrational number.

Hence, we can conclude that $6+\sqrt{ } 2$ is irrational.

