EXERCISE 1.4

1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:
(i) $13 / 3125$ (ii) $17 / 8$ (iii) $64 / 455$ (iv) $15 / 1600$ (v) $29 / 343$ (vi) $23 /\left(2^{3} 5^{2}\right)\left(\right.$ vii) $129 /\left(2^{2} 5^{7} 7^{5}\right)($ viii) $6 / 15$ (ix) $35 / 50$ (x) $77 / 210$

Solutions:

Note: If the denominator has only factors of 2 and 5 or in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$ then it has terminating decimal expansion.
If the denominator has factors other than 2 and 5 then it has a non-terminating decimal expansion.
(i) $13 / 3125$

Factorizing the denominator, we get,
$3125=5 \times 5 \times 5 \times 5 \times 5=5^{5}$
Since, the denominator has only 5 as its factor, $13 / 3125$ has a terminating decimal expansion.
(ii) $\mathbf{1 7 / 8}$

Factorizing the denominator, we get,
$8=2 \times 2 \times 2=2^{3}$
Since, the denominator has only 2 as its factor, $17 / 8$ has a terminating decimal expansion.
(iii) 64/455

Factorizing the denominator, we get,
$455=5 \times 7 \times 13$
Since, the denominator is not in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$, thus $64 / 455$ has a non-terminating decimal expansion.
(iv) 15/ 1600

Factorizing the denominator, we get,
$1600=2^{6} \times 5^{2}$
Since, the denominator is in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$, thus $15 / 1600$ has a terminating decimal expansion.
(v) $29 / 343$

Factorizing the denominator, we get,
$343=7 \times 7 \times 7=7^{3}$ Since, the denominator is not in the form of $2^{m} \times 5^{\text {n }}$ thus 29/343 has a non-terminating decimal expansion.
(vi) $23 /\left(2^{3} 5^{2}\right)$

Clearly, the denominator is in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$.
Hence, 23/ $\left(2^{3} 5^{2}\right)$ has a terminating decimal expansion.
(vii) $129 /\left(2^{2} 5^{77^{5}}\right)$

As you can see, the denominator is not in the form of $2^{\mathrm{m}} \times 5^{\text {n }}$.
Hence, $129 /\left(2^{2} 5^{7} 7^{5}\right)$ has a non-terminating decimal expansion.
(viii) $6 / 15$
$6 / 15=2 / 5$
Since, the denominator has only 5 as its factor, thus, $6 / 15$ has a terminating decimal expansion.
(ix) $35 / 50$
$35 / 50=7 / 10$
Factorising the denominator, we get,
$10=2 \times 5$
Since, the denominator is in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$ thus, $35 / 50$ has a terminating decimal expansion.
(x) $77 / 210$
$77 / 210=(7 \times 11) /(30 \times 7)=11 / 30$
Factorising the denominator, we get,
$30=2 \times 3 \times 5$
As you can see, the denominator is not in the form of $2^{\mathrm{m}} \times 5^{\mathrm{n}}$. Hence, $77 / 210$ has a non-terminating decimal expansion.
2. Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

Solutions:

(i) $13 / 3125$

$13 / 3125=0.00416$
(ii) $\mathbf{1 7 / 8}$

8) $17(2.125$

-16
\qquad
10
-8

20
-16
40
-40
00
\qquad
$17 / 8=2.125$
(iii) $\mathbf{6 4 / 4 5 5}$ has a non terminating decimal expansion
(iv) $15 / 1600$
1600) $15.000000(0.009375$

150
0

1500
0

-14400

6000
-4800

	12000
	-11200

8000
-8000
0000
$15 / 1600=0.009375$
(v) 29/343 has a non terminating decimal expansion
(vi) $23 /\left(\mathbf{2}^{3} 5^{2}\right)=23 /(8 \times 25)=23 / 200$

200) 23.000(0.115

0
\qquad
23
-0
\qquad
230
-200

300
-200
1000
-1000

0000
$23 /\left(2^{3} 5^{2}\right)=0.115$
(vii) $\mathbf{1 2 9 /}\left(\mathbf{2}^{25} \mathbf{5}^{5}\right)$ has a non terminating decimal expansion
(viii) $6 / 15=2 / 5$
5) $2.0(0.4$

0

20
-20

00
(ix) $\mathbf{3 5 / 5 0}=7 / 10$
10) $7(0.7$

0

70
-70

00
$35 / 50=0.7$
(x) 77/210 has a non-terminating decimal expansion.
3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p q what can you say about the prime factors of q ?
(i) $\mathbf{4 3 . 1 2 3 4 5 6 7 8 9}$

NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers

(ii) $\mathbf{0 . 1 2 0 1 2 0 0 1 2 0 0 0 1 2 0 0 0 0 . ~ . ~ . ~}$
(iii) $\mathbf{4 3 . 1 2 3 4 5 6 7 8 9}$

Solutions:
(i) 43.123456789

Since it has a terminating decimal expansion, it is a rational number in the form of p / q and q has factors of 2 and 5 only.
(ii) $0.120120012000120000 \ldots$

Since, it has non-terminating and non- repeating decimal expansion, it is an irrational number.
(iii) 43.123456789

Since it has non-terminating but repeating decimal expansion, it is a rational number in the form of p / q and q has factors other than 2 and 5.

