EXERCISE: 10.1

1. How many tangents can a circle have?

Answer:

There can be infinite tangents to a circle. A circle is made up of infinite points which are at an equal distance from a point. Since there are infinite points on the circumference of a circle, infinite tangents can be drawn from them.
2. Fill in the blanks.
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a \qquad
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad
Answer:
(i) A tangent to a circle intersects it in one point(s).
(ii) A line intersecting a circle in two points is called a secant.
(iii) A circle can have two parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called the point of contact.
3. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is:
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) $\sqrt{ } 119 \mathrm{~cm}$

Answer:

In the above figure, the line that is drawn from the centre of the given circle to the tangent PQ is perpendicular to PQ .
And so, $\mathrm{OP} \perp \mathrm{PQ}$
Using Pythagoras' theorem in triangle $\triangle \mathrm{OPQ}$, we get,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$
$(12)^{2}=5^{2}+\mathrm{PQ}^{2}$
$\mathrm{PQ}^{2}=144-25$
$\mathrm{PQ}^{2}=119$
$P Q=\sqrt{ } 119 \mathrm{~cm}$
So, option D, i.e., $\sqrt{ } 119 \mathrm{~cm}$, is the length of PQ .
4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, $X Y$ and $A B$ are two parallel lines. Line segment $A B$ is the tangent at point C, while line segment XY is the secant.

