EXERCISE 11.1

In each of the following, give the justification for the construction also.

1. Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.

Construction Procedure
A line segment with a measure of 7.6 cm length is divided in the ratio of $5: 8$ as follows.

1. Draw line segment AB with a length measure of 7.6 cm .
2. Draw a ray $A X$ that makes an acute angle with line segment $A B$.
3. Locate the points, i.e., $13(=5+8)$ points, such as A1, A2, A3, A4 \qquad A13, on the ray AX, such that it becomes $\mathrm{AA} 1=\mathrm{A} 1 \mathrm{~A} 2=\mathrm{A} 2 \mathrm{~A} 3$ and so on.
4. Join the line segment and the ray, BA13.
5. Through the point A5, draw a line parallel to BA13 which makes an angle equal to $\angle \mathrm{AA} 13 \mathrm{~B}$.
6. Point A5, which intersects line AB at point C .
7. C is the point that divides line segment AB of 7.6 cm in the required ratio of 5:8.
8. Now, measure the lengths of the line AC and CB . It becomes the measure of 2.9 cm and 4.7 cm , respectively.

Justification:
The construction of the given problem can be justified by proving that
$\mathrm{AC} / \mathrm{CB}=5 / 8$
By construction, we have $\mathrm{A} 5 \mathrm{C} \| \mathrm{A} 13 \mathrm{~B}$. From the Basic proportionality theorem for the triangle AA 13 B , we get
$\mathrm{AC} / \mathrm{CB}=\mathrm{AA}_{5} / \mathrm{A}_{5} \mathrm{~A}_{13} \ldots .$.

NCERT Solutions for Class 10 Maths Chapter 11 -
 Constructions

From the figure constructed, it is observed that AA5 and A5A13 contain 5 and 8 equal divisions of line segments, respectively.

Therefore, it becomes
$\mathrm{AA}_{5} / \mathrm{A}_{5} \mathrm{~A}_{13}=5 / 8 \ldots$ (2)
Compare the equations (1) and (2), we obtain
$\mathrm{AC} / \mathrm{CB}=5 / 8$
Hence, justified.
2. Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $2 / 3$ of the corresponding sides of the first triangle.

Construction Procedure

1. Draw a line segment $A B$ which measures 4 cm , i.e., $\mathrm{AB}=4 \mathrm{~cm}$.
2. Take point A as the centre, and draw an arc of radius 5 cm .
3. Similarly, take point B as its centre, and draw an arc of radius 6 cm .
4. The arcs drawn will intersect each other at point C .
5. Now, we have obtained $\mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, and therefore, $\triangle \mathrm{ABC}$ is the required triangle.
6. Draw a ray $A X$ which makes an acute angle with the line segment $A B$ on the opposite side of vertex C.
7. Locate 3 points such as A1, A2, and A3 (as 3 is greater between 2 and 3) on line AX such that it becomes AA1= $\mathrm{A} 1 \mathrm{~A} 2=\mathrm{A} 2 \mathrm{~A} 3$.
8. Join point BA3 and draw a line through A2, which is parallel to the line BA3 that intersects AB at point B'.
9. Through the point B^{\prime}, draw a line parallel to line BC that intersects the line AC at C^{\prime}.
10. Therefore, $\Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ is the required triangle.

Justification

The construction of the given problem can be justified by proving that
$\mathrm{AB}^{\prime}=(2 / 3) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(2 / 3) \mathrm{BC}$
$\mathrm{AC}^{\prime}=(2 / 3) \mathrm{AC}$
From the construction, we get $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \| \mathrm{BC}$
$\therefore \angle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$ (Corresponding angles)
In $\triangle A B^{\prime} C^{\prime}$ and $\triangle A B C$,
$\angle \mathrm{ABC}=\angle \mathrm{AB}{ }^{\prime} \mathrm{C}$ (Proved above)
$\angle \mathrm{BAC}=\angle \mathrm{B}^{\prime} \mathrm{AC}^{\prime}$ (Common)
$\therefore \triangle \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC} \ldots$... (1)
In $\triangle A A B^{\prime}$ and $\triangle A A B$,
$\angle \mathrm{A}_{2} \mathrm{AB}^{\prime}=\angle \mathrm{A}_{3} \mathrm{AB}$ (Common)
From the corresponding angles, we get
$\angle \mathrm{AA}_{2} \mathrm{~B}^{\prime}=\angle \mathrm{AA}_{3} \mathrm{~B}$
Therefore, from the AA similarity criterion, we obtain
$\triangle \mathrm{AA}_{2} \mathrm{~B}^{\prime}$ and $\mathrm{AA}_{3} \mathrm{~B}$
So, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{AA}_{2} / \mathrm{AA}_{3}$

Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=2 / 3$ \qquad
From equations (1) and (2), we get
$\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC}=2 / 3$
This can be written as
$\mathrm{AB}^{\prime}=(2 / 3) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(2 / 3) \mathrm{BC}$
$\mathrm{AC}^{\prime}=(2 / 3) \mathrm{AC}$
Hence, justified.
3. Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are $7 / 5$ of the corresponding sides of the first triangle

Construction Procedure

1. Draw a line segment $\mathrm{AB}=5 \mathrm{~cm}$.
2. Take A and B as the centre, and draw the arcs of radius 6 cm and 7 cm , respectively.
3. These arcs will intersect each other at point C, and therefore, $\triangle \mathrm{ABC}$ is the required triangle with the length of sides as $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm , respectively.
4. Draw a ray $A X$ which makes an acute angle with the line segment $A B$ on the opposite side of vertex C.
5. Locate the 7 points, such as $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}$ (as 7 is greater between 5 and 7), on line $A X$ such that it becomes $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}=\mathrm{A}_{3} \mathrm{~A}_{4}=\mathrm{A}_{4} \mathrm{~A}_{5}=\mathrm{A}_{5} \mathrm{~A}_{6}=\mathrm{A}_{6} \mathrm{~A}_{7}$
6. Join the points BA_{5} and draw a line from A_{7} to BA_{5}, which is parallel to the line BA_{5} where it intersects the extended line segment AB at point B^{\prime}.
7. Now, draw a line from B^{\prime} to the extended line segment $A C$ at C^{\prime}, which is parallel to the line $B C$, and it intersects to make a triangle.
8. Therefore, $\Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ is the required triangle.

Justification

The construction of the given problem can be justified by proving that
$\mathrm{AB}^{\prime}=(7 / 5) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(7 / 5) \mathrm{BC}$
$\mathrm{AC}^{\prime}=(7 / 5) \mathrm{AC}$
From the construction, we get $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \| \mathrm{BC}$
$\therefore \angle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$ (Corresponding angles)
In $\triangle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{ABC}$,
$\angle \mathrm{ABC}=\angle \mathrm{AB}^{\prime} \mathrm{C}$ (Proved above)
$\angle \mathrm{BAC}=\angle \mathrm{B}^{\prime} \mathrm{AC}{ }^{\prime}$ (Common)
$\therefore \triangle \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC} \ldots$. (1)
In $\triangle \mathrm{AA}_{7} \mathrm{~B}^{\prime}$ and $\triangle \mathrm{AA}_{5} \mathrm{~B}$,
$\angle \mathrm{A}_{7} \mathrm{AB}^{\prime}=\angle \mathrm{A}_{5} \mathrm{AB}$ (Common)
From the corresponding angles, we get
$\angle \mathrm{A} \mathrm{A}_{7} \mathrm{~B}^{\prime}=\angle \mathrm{A} \mathrm{A}_{5} \mathrm{~B}$
Therefore, from the AA similarity criterion, we obtain
$\Delta \mathrm{A}_{2} \mathrm{~B}^{\prime}$ and $\mathrm{A}_{3} \mathrm{~B}$
So, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{AA}_{5} / \mathrm{AA}_{7}$
Therefore, $\mathrm{AB} / \mathrm{AB}^{\prime}=5 / 7$
From equations (1) and (2), we get
$\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC}=7 / 5$
This can be written as
$\mathrm{AB}^{\prime}=(7 / 5) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(7 / 5) \mathrm{BC}$
$\mathrm{AC}^{\prime}=(7 / 5) \mathrm{AC}$
Hence, justified.

4. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another tr sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle

Construction Procedure:

1. Draw a line segment BC with a measure of 8 cm .
2. Now, draw the perpendicular bisector of the line segment $B C$ and intersect at point D.
3. Take the point D as the centre and draw an arc with a radius of 4 cm , which intersects the perpendicular bisector at the point A .
4. Now, join the lines AB and AC , and the triangle is the required triangle.
5. Draw a ray BX which makes an acute angle with the line BC on the side opposite to the vertex A .
6. Locate the 3 points B_{1}, B_{2} and B_{3} on the ray $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}$
7. Join the points $B_{2} C$ and draw a line from B_{3}, which is parallel to the line $B_{2} C$ where it intersects the extended line segment BC at point C^{\prime}.
8. Now, draw a line from C^{\prime} to the extended line segment $A C$ at A^{\prime}, which is parallel to the line $A C$, and it intersects to make a triangle.
9. Therefore, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification
The construction of the given problem can be justified by proving that
$\mathrm{A}^{\prime} \mathrm{B}=(3 / 2) \mathrm{AB}$
$\mathrm{BC}^{\prime}=(3 / 2) \mathrm{BC}$
$\mathrm{A}^{\prime} \mathrm{C}^{\prime}=(3 / 2) \mathrm{AC}$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
In $\triangle A^{\prime} B C^{\prime}$ and $\triangle A B C$,
$\angle \mathrm{B}=\angle \mathrm{B}$ (Common)
$\angle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}=\angle \mathrm{ACB}$
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
$\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}{ }^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=3 / 2$
Hence, justified.
5. Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $3 / 4$ of the corresponding sides of the triangle $A B C$.

Construction Procedure

1. Draw a $\triangle \mathrm{ABC}$ with base side $\mathrm{BC}=6 \mathrm{~cm}$, and $\mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$.
2. Draw a ray $B X$ which makes an acute angle with $B C$ on the opposite side of vertex A.
3. Locate 4 points (as 4 is greater in 3 and 4), such as B1, B2, B3, B4, on line segment BX.
4. Join the points B4C and also draw a line through B3, parallel to B4C intersecting the line segment BC at C^{\prime}.
5. Draw a line through C^{\prime} parallel to the line $A C$, which intersects the line $A B$ at A^{\prime}.
6. Therefore, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification
The construction of the given problem can be justified by proving that
Since the scale factor is $3 / 4$, we need to prove
$\mathrm{A}^{\prime} \mathrm{B}=(3 / 4) \mathrm{AB}$
$\mathrm{BC}^{\prime}=(3 / 4) \mathrm{BC}$
$\mathrm{A}^{\prime} \mathrm{C}^{\prime}=(3 / 4) \mathrm{AC}$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$

In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle \mathrm{B}=\angle \mathrm{B}$ (Common)
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=3 / 4$
Hence, justified.
6. Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{A}=105^{\circ}$. Then, construct a triangle whose sides are $4 / 3$ times the corresponding sides of $\triangle \mathrm{ABC}$.
To find $\angle \mathrm{C}$:
Given:
$\angle \mathrm{B}=45^{\circ}, \angle \mathrm{A}=105^{\circ}$
We know that,
The sum of all interior angles in a triangle is 180°.
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$105^{\circ}+45^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-150^{\circ}$
$\angle \mathrm{C}=30^{\circ}$
So, from the property of the triangle, we get $\angle \mathrm{C}=30^{\circ}$
Construction Procedure
The required triangle can be drawn as follows.

1. Draw a $\triangle A B C$ with side measures of base $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$, and $\angle C=30^{\circ}$.
2. Draw a ray BX that makes an acute angle with BC on the opposite side of vertex A .
3. Locate 4 points (as 4 is greater in 4 and 3), such as B1, B2, B3, B4, on the ray BX.
4. Join the points B3C.
5. Draw a line through B4 parallel to B3C, which intersects the extended line BC at C^{\prime} '.
6. Through C^{\prime}, draw a line parallel to the line AC that intersects the extended line segment at C^{\prime}.
7. Therefore, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification

The construction of the given problem can be justified by proving that
Since the scale factor is $4 / 3$, we need to prove
$\mathrm{A}^{\prime} \mathrm{B}=(4 / 3) \mathrm{AB}$
$B C^{\prime}=(4 / 3) B C$
$\mathrm{A}^{\prime} \mathrm{C}^{\prime}=(4 / 3) \mathrm{AC}$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$
In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle \mathrm{B}=\angle \mathrm{B}$ (Common)
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}{ }^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=4 / 3$
Hence, justified.
7. Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm . Then construct another triangle whose sides are $5 / 3$ times the corresponding sides of the given triangle.
Given:

NCERT Solutions for Class 10 Maths Chapter 11 Constructions

The sides other than the hypotenuse are of lengths 4 cm and 3 cm . It defines that the sides are perpendicular to each other

Construction Procedure
The required triangle can be drawn as follows.

1. Draw a line segment $\mathrm{BC}=3 \mathrm{~cm}$.
2. Now, measure and draw an angle 90°
3. Take B as the centre and draw an arc with a radius of 4 cm , and intersects the ray at point B.
4. Now, join the lines AC , and the triangle ABC is the required triangle.
5. Draw a ray BX that makes an acute angle with BC on the opposite side of vertex A .
6. Locate 5 such as B1, B2, B3, B4, on the ray BX, such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}$
7. Join the points B3C.
8. Draw a line through B5 parallel to B3C, which intersects the extended line BC at C^{\prime}.
9. Through C^{\prime}, draw a line parallel to the line AC that intersects the extended line AB at A^{\prime}.
10. Therefore, $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.

Justification
The construction of the given problem can be justified by proving that
Since the scale factor is $5 / 3$, we need to prove
$\mathrm{A}^{\prime} \mathrm{B}=(5 / 3) \mathrm{AB}$
$\mathrm{BC}^{\prime}=(5 / 3) \mathrm{BC}$
$\mathrm{A}^{\prime} \mathrm{C}^{\prime}=(5 / 3) \mathrm{AC}$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$
In $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ and $\triangle \mathrm{ABC}$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle \mathrm{B}=\angle \mathrm{B}$ (Common)
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes

Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=5 / 3$
Hence, justified.

