EXERCISE: 12.3

1. Find the area of the shaded region in Fig. 12.19, if $P Q=24 \mathrm{~cm}, P R=7 \mathrm{~cm}$ and O is the centre of the circle.

Fig. 12.19

Solution:

Here, P is in the semi-circle, and so,
$\mathrm{P}=90^{\circ}$
So, it can be concluded that QR is the hypotenuse of the circle and is equal to the diameter of the circle.
$\therefore \mathrm{QR}=\mathrm{D}$
Using the Pythagorean theorem,
$\mathrm{QR}^{2}=\mathrm{PR}^{2}+\mathrm{PQ}^{2}$
Or, $\mathrm{QR}^{2}=7^{2}+24^{2}$
$\mathrm{QR}=25 \mathrm{~cm}=$ Diameter
Hence, the radius of the circle $=25 / 2 \mathrm{~cm}$
Now, the area of the semicircle $=\left(\pi R^{2}\right) / 2$
$=(22 / 7) \times(25 / 2) \times(25 / 2) / 2 \mathrm{~cm}^{2}$
$=13750 / 56 \mathrm{~cm}^{2}=245.54 \mathrm{~cm}^{2}$
Also, the area of the $\triangle \mathrm{PQR}=1 / 2 \times \mathrm{PR} \times \mathrm{PQ}$
$=(1 / 2) \times 7 \times 24 \mathrm{~cm}^{2}$
$=84 \mathrm{~cm}^{2}$
Hence, the area of the shaded region $=245.54 \mathrm{~cm}^{2}-84 \mathrm{~cm}^{2}$
$=161.54 \mathrm{~cm}^{2}$
2. Find the area of the shaded region in Fig. 12.20, if the radii of the two concentric circles with centre \mathbf{O} are 7 cm and 14 cm , respectively and $\mathrm{AOC}=40^{\circ}$.

Solution:

Fig. 12.20
Given,
Angle made by sector $=40^{\circ}$,
Radius the inner circle $=\mathrm{r}=7 \mathrm{~cm}$, and
Radius of the outer circle $=\mathrm{R}=14 \mathrm{~cm}$
We know,
Area of the sector $=\left(\theta / 360^{\circ}\right) \times \pi r^{2}$
So, Area of $\mathrm{OAC}=\left(40^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=68.44 \mathrm{~cm}^{2}$
Area of the sector $\mathrm{OBD}=\left(40^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=(1 / 9) \times(22 / 7) \times 7^{2}=17.11 \mathrm{~cm}^{2}$
Now, the area of the shaded region $\mathrm{ABDC}=$ Area of $\mathrm{OAC}-$ Area of the OBD
$=68.44 \mathrm{~cm}^{2}-17.11 \mathrm{~cm}^{2}=51.33 \mathrm{~cm}^{2}$
3. Find the area of the shaded region in Fig. 12.21, if ABCD is a square of side 14 cm and APD and BPC are semicircles.

Fig. 12.21

Solution:

Side of the square ABCD (as given) $=14 \mathrm{~cm}$
So, the Area of $\mathrm{ABCD}=\mathrm{a}^{2}$
$=14 \times 14 \mathrm{~cm}^{2}=196 \mathrm{~cm}^{2}$
We know that the side of the square $=$ diameter of the circle $=14 \mathrm{~cm}$
So, the side of the square $=$ diameter of the semicircle $=14 \mathrm{~cm}$
\therefore the radius of the semicircle $=7 \mathrm{~cm}$
Now, the area of the semicircle $=\left(\pi R^{2}\right) / 2$
$=(22 / 7 \times 7 \times 7) / 2 \mathrm{~cm}^{2}$
$=77 \mathrm{~cm}^{2}$
\therefore he area of two semicircles $=2 \times 77 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Hence, the area of the shaded region = Area of the Square - Area of two semicircles
$=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}$
$=42 \mathrm{~cm}^{2}$
4. Find the area of the shaded region in Fig. 12.22, where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle $O A B$ of side 12 cm as the centre.

Fig. 12.22

Solution:

It is given that OAB is an equilateral triangle having each angle as 60°
The area of the sector is common in both.
The radius of the circle $=6 \mathrm{~cm}$
Side of the triangle $=12 \mathrm{~cm}$
Area of the equilateral triangle $=(\sqrt{ } 3 / 4)(\mathrm{OA})^{2}=(\sqrt{3} / 4) \times 12^{2}=36 \sqrt{3} \mathrm{~cm}^{2}$
Area of the circle $=\pi \mathrm{R}^{2}=(22 / 7) \times 6^{2}=792 / 7 \mathrm{~cm}^{2}$
Area of the sector making angle $60^{\circ}=\left(60^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=(1 / 6) \times(22 / 7) \times 6^{2} \mathrm{~cm}^{2}=132 / 7 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the equilateral triangle + Area of the circle - Area of the sector
$=36 \sqrt{ } 3 \mathrm{~cm}^{2}+792 / 7 \mathrm{~cm}^{2}-132 / 7 \mathrm{~cm}^{2}$
$=(36 \sqrt{ } 3+660 / 7) \mathrm{cm}^{2}$
5. From each corner of a square of side 4 cm , a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in Fig. 12.23. Find the area of the remaining portion of the square.

Fig. 12.23

Solution:

Side of the square $=4 \mathrm{~cm}$
The radius of the circle $=1 \mathrm{~cm}$
Four quadrants of a circle are cut from the corner, and one circle of radius are cut from the middle.
Area of the square $=(\text { side })^{2}=4^{2}=16 \mathrm{~cm}^{2}$
Area of the quadrant $=\left(\pi \mathrm{R}^{2}\right) / 4 \mathrm{~cm}^{2}=(22 / 7) \times\left(1^{2}\right) / 4=11 / 14 \mathrm{~cm}^{2}$
\therefore Total area of the 4 quadrants $=4 \times(11 / 14) \mathrm{cm}^{2}=22 / 7 \mathrm{~cm}^{2}$
Area of the circle $=\pi \mathrm{R}^{2} \mathrm{~cm}^{2}=\left(22 / 7 \times 1^{2}\right)=22 / 7 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the square $-($ Area of the 4 quadrants + Area of the circle $)$
$=16 \mathrm{~cm}^{2}-(22 / 7) \mathrm{cm}^{2}-(22 / 7) \mathrm{cm}^{2}$
$=68 / 7 \mathrm{~cm}^{2}$
6. In a circular table cover of radius 32 cm , a design is formed, leaving an equilateral triangle ABC in the middle, as shown in Fig. 12.24. Find the area of the design.

Fig. 12.24

Solution:

The radius of the circle $=32 \mathrm{~cm}$
Draw a median AD of the triangle passing through the centre of the circle.
$\Rightarrow \mathrm{BD}=\mathrm{AB} / 2$
Since, AD is the median of the triangle
$\therefore \mathrm{AO}=$ Radius of the circle $=(2 / 3) \mathrm{AD}$
$\Rightarrow(2 / 3) \mathrm{AD}=32 \mathrm{~cm}$
$\Rightarrow \mathrm{AD}=48 \mathrm{~cm}$
In $\triangle \mathrm{ADB}$,

By Pythagoras' theorem,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \mathrm{AB}^{2}=48^{2}+(\mathrm{AB} / 2)^{2}$
$\Rightarrow \mathrm{AB}^{2}=2304+\mathrm{AB}^{2} / 4$
$\Rightarrow 3 / 4\left(\mathrm{AB}^{2}\right)=2304$
$\Rightarrow \mathrm{AB}^{2}=3072$
$\Rightarrow \mathrm{AB}=32 \sqrt{ } 3 \mathrm{~cm}$

Area of $\triangle \mathrm{ADB}=\sqrt{ } 3 / 4 \times(32 \sqrt{ } 3)^{2} \mathrm{~cm}^{2}=768 \sqrt{ } 3 \mathrm{~cm}^{2}$
Area of the circle $=\pi \mathrm{R}^{2}=(22 / 7) \times 32 \times 32=22528 / 7 \mathrm{~cm}^{2}$
Area of the design $=$ Area of the circle - Area of $\triangle \mathrm{ADB}$
$=(22528 / 7-768 \sqrt{ } 3) \mathrm{cm}^{2}$
7. In Fig. 12.25, ABCD is a square of side 14 cm . With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

Fig. 12.25

Solution:

Side of square $=14 \mathrm{~cm}$
Four quadrants are included in the four sides of the square.
\therefore radius of the circles $=14 / 2 \mathrm{~cm}=7 \mathrm{~cm}$
Area of the square $\mathrm{ABCD}=14^{2}=196 \mathrm{~cm}^{2}$
Area of the quadrant $=\left(\pi \mathrm{R}^{2}\right) / 4 \mathrm{~cm}^{2}=(22 / 7) \times 7^{2} / 4 \mathrm{~cm}^{2}$
$=77 / 2 \mathrm{~cm}^{2}$
Total area of the quadrant $=4 \times 77 / 2 \mathrm{~cm}^{2}=154 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the square $A B C D-$ Area of the quadrant
$=196 \mathrm{~cm}^{2}-154 \mathrm{~cm}^{2}$
$=42 \mathrm{~cm}^{2}$
8. Fig. 12.26 depicts a racing track whose left and right ends are semicircular.

The distance between the two inner parallel line segments is $\mathbf{6 0} \mathrm{m}$ and they are each 106 m long. If the track is 10 m wide, find
(i) the distance around the track along its inner edge
(ii) the area of the track.

Fig. 12.26

Solution:

Width of the track $=10 \mathrm{~m}$
Distance between two parallel lines $=60 \mathrm{~m}$
Length of parallel tracks $=106 \mathrm{~m}$

$\mathrm{DE}=\mathrm{CF}=60 \mathrm{~m}$
The radius of the inner semicircle, $\mathrm{r}=\mathrm{OD}=\mathrm{O}^{\prime} \mathrm{C}$
$=60 / 2 \mathrm{~m}=30 \mathrm{~m}$
The radius of the outer semicircle, $\mathrm{R}=\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{B}$
$=30+10 \mathrm{~m}=40 \mathrm{~m}$
Also, $\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=\mathrm{GH}=106 \mathrm{~m}$
Distance around the track along its inner edge $=C D+E F+2 \times($ Circumference of inner semicircle $)$
$=106+106+(2 \times \pi \mathrm{r}) \mathrm{m}=212+(2 \times 22 / 7 \times 30) \mathrm{m}$
$=212+1320 / 7 \mathrm{~m}=2804 / 7 \mathrm{~m}$
Area of the track $=$ Area of $\mathrm{ABCD}+$ Area $\mathrm{EFGH}+2 \times($ area of outer semicircle $)-2 \times($ area of inner semicircle $)$
$=(\mathrm{AB} \times \mathrm{CD})+(\mathrm{EF} \times \mathrm{GH})+2 \times\left(\pi \mathrm{r}^{2} / 2\right)-2 \times\left(\pi \mathrm{R}^{2} / 2\right) \mathrm{m}^{2}$
$=(106 \times 10)+(106 \times 10)+2 \times \pi / 2\left(\mathrm{r}^{2}-\mathrm{R}^{2}\right) \mathrm{m}^{2}$
$=2120+22 / 7 \times 70 \times 10 \mathrm{~m}^{2}$
$=4320 \mathrm{~m}^{2}$
9. In Fig. 12.27, AB and CD are two diameters of a circle (with centre O) perpendicular to each other, and OD is the diameter of the smaller circle. If $\mathrm{OA}=7 \mathrm{~cm}$, find the area of the shaded region.

Fig. 12.27

Solution:

The radius of larger circle, $\mathrm{R}=7 \mathrm{~cm}$
The radius of smaller circle, $r=7 / 2 \mathrm{~cm}$
Height of $\triangle \mathrm{BCA}=\mathrm{OC}=7 \mathrm{~cm}$
Base of $\triangle B C A=A B=14 \mathrm{~cm}$
Area of $\triangle \mathrm{BCA}=1 / 2 \times \mathrm{AB} \times \mathrm{OC}=(1 / 2) \times 7 \times 14=49 \mathrm{~cm}^{2}$
Area of larger circle $=\pi R^{2}=(22 / 7) \times 7^{2}=154 \mathrm{~cm}^{2}$
Area of larger semicircle $=154 / 2 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}$
Area of smaller circle $=\pi r^{2}=(22 / 7) \times(7 / 2) \times(7 / 2)=77 / 2 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the larger circle - Area of the triangle - Area of the larger semicircle + Area of the smaller circle

Area of the shaded region $=(154-49-77+77 / 2) \mathrm{cm}^{2}$
$=133 / 2 \mathrm{~cm}^{2}=66.5 \mathrm{~cm}^{2}$
10. The area of an equilateral triangle ABC is $17320.5 \mathrm{~cm}^{2}$. With each vertex of the triangle as the centre, a circle is drawn with a radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region (Use $\pi=3.14$ and $\sqrt{ } 3=1.73205$).

Fig. 12.28
Solution:
ABC is an equilateral triangle.
$\therefore \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
There are three sectors, each making 60°.
Area of $\triangle \mathrm{ABC}=17320.5 \mathrm{~cm}^{2}$
$\Rightarrow \sqrt{3} / 4 \times(\text { side })^{2}=17320.5$
$\Rightarrow(\text { side })^{2}=17320.5 \times 4 / 1.73205$
$\Rightarrow(\text { side })^{2}=4 \times 10^{4}$
\Rightarrow side $=200 \mathrm{~cm}$
Radius of the circles $=200 / 2 \mathrm{~cm}=100 \mathrm{~cm}$
Area of the sector $=\left(60^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=1 / 6 \times 3.14 \times(100)^{2} \mathrm{~cm}^{2}$
$=15700 / 3 \mathrm{~cm}^{2}$
Area of 3 sectors $=3 \times 15700 / 3=15700 \mathrm{~cm}^{2}$
Thus, the area of the shaded region $=$ Area of an equilateral triangle $\mathrm{ABC}-$ Area of 3 sectors
$=17320.5-15700 \mathrm{~cm}^{2}=1620.5 \mathrm{~cm}^{2}$
11. On a square handkerchief, nine circular designs, each of a radius 7 cm are made (see Fig. 12.29). Find the area of the remaining portion of the handkerchief.

Fig. 12.29
Solution:
Number of circular designs $=9$
The radius of the circular design $=7 \mathrm{~cm}$
There are three circles on one side of the square handkerchief.
\therefore side of the square $=3 \times$ diameter of circle $=3 \times 14=42 \mathrm{~cm}$
Area of the square $=42 \times 42 \mathrm{~cm}^{2}=1764 \mathrm{~cm}^{2}$
Area of the circle $=\pi \mathrm{r}^{2}=(22 / 7) \times 7 \times 7=154 \mathrm{~cm}^{2}$
Total area of the design $=9 \times 154=1386 \mathrm{~cm}^{2}$
Area of the remaining portion of the handkerchief $=$ Area of the square - Total area of the design $=1764-1386=378$ cm^{2}
12. In Fig. 12.30, OACB is a quadrant of a circle with centre O and a radius 3.5 cm . If $\mathrm{OD}=\mathbf{2 ~ c m}$, find the area of the
(i) quadrant OACB
(ii) shaded region

Fig. 12.30

Solution:

Radius of the quadrant $=3.5 \mathrm{~cm}=7 / 2 \mathrm{~cm}$
(i) Area of the quadrant $\mathrm{OACB}=\left(\pi \mathrm{R}^{2}\right) / 4 \mathrm{~cm}^{2}$
$=(22 / 7) \times(7 / 2) \times(7 / 2) / 4 \mathrm{~cm}^{2}$
$=77 / 8 \mathrm{~cm}^{2}$
(ii) Area of the triangle $\mathrm{BOD}=(1 / 2) \times(7 / 2) \times 2 \mathrm{~cm}^{2}$
$=7 / 2 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the quadrant - Area of the triangle BOD
$=(77 / 8)-(7 / 2) \mathrm{cm}^{2}=49 / 8 \mathrm{~cm}^{2}$
$=6.125 \mathrm{~cm}^{2}$
13. In Fig. 12.31, a square $O A B C$ is inscribed in a quadrant $O P B Q$. If $O A=20 \mathrm{~cm}$, find the area of the shaded region. (Use $\pi=3.14$)

Fig. 12.31

Solution:

Side of square $=O A=A B=20 \mathrm{~cm}$
The radius of the quadrant $=\mathrm{OB}$

OAB is the right-angled triangle
By Pythagoras' theorem in $\triangle \mathrm{OAB}$,
$\mathrm{OB}^{2}=\mathrm{AB}^{2}+\mathrm{OA}^{2}$
$\Rightarrow \mathrm{OB}^{2}=20^{2}+20^{2}$
$\Rightarrow \mathrm{OB}^{2}=400+400$
$\Rightarrow \mathrm{OB}^{2}=800$
$\Rightarrow \mathrm{OB}=20 \sqrt{ } 2 \mathrm{~cm}$
Area of the quadrant $=\left(\pi \mathrm{R}^{2}\right) / 4 \mathrm{~cm}^{2}=(3.14 / 4) \times(20 \sqrt{2})^{2} \mathrm{~cm}^{2}=628 \mathrm{~cm}^{2}$

Area of the square $=20 \times 20=400 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the quadrant - Area of the square
$=628-400 \mathrm{~cm}^{2}=228 \mathrm{~cm}^{2}$
14. AB and CD are, respectively, arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Fig. 12.32). If $\angle A O B=30^{\circ}$, find the area of the shaded region.

Fig. 12.32

Solution:

The radius of the larger circle, $\mathrm{R}=21 \mathrm{~cm}$
The radius of the smaller circle, $r=7 \mathrm{~cm}$
Angle made by sectors of both concentric circles $=30^{\circ}$
Area of the larger sector $=\left(30^{\circ} / 360^{\circ}\right) \times \pi \mathrm{R}^{2} \mathrm{~cm}^{2}$
$=(1 / 12) \times(22 / 7) \times 21^{2} \mathrm{~cm}^{2}$
$=231 / 2 \mathrm{~cm}^{2}$
Area of the smaller circle $=\left(30^{\circ} / 360^{\circ}\right) \times \pi \mathrm{r}^{2} \mathrm{~cm}^{2}$
$=1 / 12 \times 22 / 7 \times 7^{2} \mathrm{~cm}^{2}$
$=77 / 6 \mathrm{~cm}^{2}$
Area of the shaded region $=(231 / 2)-(77 / 6) \mathrm{cm}^{2}$
$=616 / 6 \mathrm{~cm}^{2}=308 / 3 \mathrm{~cm}^{2}$
15. In Fig. 12.33, ABC is a quadrant of a circle of radius 14 cm , and a semicircle is drawn with BC as a diameter. Find the area of the shaded region.

Fig. 12.33

Solution:

The radius of the quadrant ABC of the circle $=14 \mathrm{~cm}$
$\mathrm{AB}=\mathrm{AC}=14 \mathrm{~cm}$
BC is the diameter of the semicircle.
ABC is the right-angled triangle.
By Pythagoras' theorem in $\triangle \mathrm{ABC}$,
$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\Rightarrow \mathrm{BC}^{2}=14^{2}+14^{2}$
$\Rightarrow \mathrm{BC}=14 \sqrt{ } 2 \mathrm{~cm}$
Radius of the semicircle $=14 \sqrt{ } 2 / 2 \mathrm{~cm}=7 \sqrt{ } 2 \mathrm{~cm}$
Area of the $\triangle \mathrm{ABC}=(1 / 2) \times 14 \times 14=98 \mathrm{~cm}^{2}$
Area of the quadrant $=(1 / 4) \times(22 / 7) \times(14 \times 14)=154 \mathrm{~cm}^{2}$
Area of the semicircle $=(1 / 2) \times(22 / 7) \times 7 \sqrt{ } 2 \times 7 \sqrt{ } 2=154 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the semicircle + Area of the $\triangle \mathrm{ABC}-$ Area of the quadrant
$=154+98-154 \mathrm{~cm}^{2}=98 \mathrm{~cm}^{2}$
16. Calculate the area of the designed region in Fig. 12.34 common between the two quadrants of circles of radius 8 cm each.

Solution:

Fig. 12.34

```
AB}=\textrm{BC}=\textrm{CD}=\textrm{AD}=8\textrm{cm
Area of }\triangle\textrm{ABC}=\mathrm{ Area of }\triangle\textrm{ADC}=(1/2)\times8\times8=32\mp@subsup{\textrm{cm}}{}{2
Area of quadrant AECB = Area of quadrant AFCD = (1/4)\times22/7\times82
=352/7 cm
Area of shaded region }=(\mathrm{ Area of quadrant AECB - Area of }\triangle\textrm{ABC})=(\mathrm{ Area of quadrant AFCD - Area of }\triangle\textrm{ADC}
=(352/7 -32)+(352/7-32) cm
=2\times(352/7-32) cm
=256/7 cm
```

