1. A solid is in the shape of a cone standing on a hemisphere, with both their radii being equal to 1 cm and the height of the cone being equal to its radius. Find the volume of the solid in terms of π.

Solution:

Here $\mathrm{r}=1 \mathrm{~cm}$ and $\mathrm{h}=1 \mathrm{~cm}$.
The diagram is as follows.

Now, Volume of solid $=$ Volume of conical part + Volume of hemispherical part
We know the volume of cone $=1 / 3 \pi r^{2} h$
And,
The volume of the hemisphere $=2 / 3 \pi r^{3}$
So, the volume of the solid will be
$=\frac{1}{3} \pi(1)^{2}[1+2(1)] \mathrm{cm}^{3}=\frac{1}{3} \pi \times 1 \times[3] \mathrm{cm}^{3}$
$=\pi \mathrm{cm}^{3}$
2. Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is $\mathbf{3} \mathbf{~ c m}$, and its length is 12 cm . If each cone has a height of 2 cm , find the volume of air contained in the model that Rachel made. (Assume the outer and inner dimensions of the model are nearly the same.)

Solution:

Given,
Height of cylinder $=12-4=8 \mathrm{~cm}$
Radius $=1.5 \mathrm{~cm}$
Height of cone $=2 \mathrm{~cm}$
Now, the total volume of the air contained will be $=$ Volume of cylinder $+2 \times($ Volume of the cone $)$
\therefore Total volume $=\pi r^{2} \mathrm{~h}+\left[2 \times\left(1 / 3 \pi r^{2} h\right)\right]$
$=18 \pi+2(1.5 \pi)$
$=66 \mathrm{~cm}^{3}$.
3. A gulab jamun contains sugar syrup up to about $\mathbf{3 0 \%}$ of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with a length of 5 cm and a diameter of 2.8 cm (see figure).

Fig. 13.15

Solution:

It is known that the gulab jamuns are similar to a cylinder with two hemispherical ends.
So, the total height of a gulab jamun $=5 \mathrm{~cm}$.
Diameter $=2.8 \mathrm{~cm}$
So, radius $=1.4 \mathrm{~cm}$
\therefore The height of the cylindrical part $=5 \mathrm{~cm}-(1.4+1.4) \mathrm{cm}$
$=2.2 \mathrm{~cm}$
Now, the total volume of one gulab jamun $=$ Volume of cylinder + Volume of two hemispheres
$=\pi r^{2} \mathrm{~h}+(4 / 3) \pi \mathrm{r}^{3}$
$=4.312 \pi+(10.976 / 3) \pi$
$=25.05 \mathrm{~cm}^{3}$

We know that the volume of sugar syrup $=30 \%$ of the total volume
So, the volume of sugar syrup in 45 gulab jamuns $=45 \times 30 \%\left(25.05 \mathrm{~cm}^{3}\right)$
$=45 \times 7.515=338.184 \mathrm{~cm}^{3}$
4. A pen stand made of wood is in the shape of a cuboid with four conical depressions to hold pens. The dimensions of the cuboid are 15 cm by 10 cm by 3.5 cm . The radius of each of the depressions is 0.5 cm , and the depth is 1.4 cm . Find the volume of wood in the entire stand (see Fig.).

Fig. 13.16

Solution:

The volume of the cuboid $=$ length x width x height
We know the cuboid's dimensions as 15 cmx 10 cmx 3.5 cm
So, the volume of the cuboid $=15 \times 10 \times 3.5=525 \mathrm{~cm}^{3}$
Here, depressions are like cones, and we know,
Volume of cone $=(1 / 3) \pi r^{2} h$
Given, radius $(\mathrm{r})=0.5 \mathrm{~cm}$ and depth $(\mathrm{h})=1.4 \mathrm{~cm}$
\therefore Volume of 4 cones $=4 \mathrm{x}(1 / 3) \pi \mathrm{r}^{2} \mathrm{~h}$
$=1.46 \mathrm{~cm}^{2}$
Now, the volume of wood $=$ Volume of the cuboid -4 x volume of the cone
$=525-1.46=523.54 \mathrm{~cm}^{2}$
5. A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm . It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm , are dropped into the vessel, one-fourth of the water flows out. Find the number of lead shots dropped in the vessel.

Solution:

For the cone,

Radius $=5 \mathrm{~cm}$,
Height $=8 \mathrm{~cm}$
Also,
Radius of sphere $=0.5 \mathrm{~cm}$
The diagram will be like

It is known that,
The volume of cone $=$ volume of water in the cone
$=1 / 3 \pi \mathrm{r}^{2} \mathrm{~h}=(200 / 3) \pi \mathrm{cm}^{3}$
Now,
Total volume of water overflown $=(1 / 4) \times(200 / 3) \pi=(50 / 3) \pi$
The volume of lead shot
$=(4 / 3) \pi r^{3}$
$=(1 / 6) \pi$
Now,
The number of lead shots $=$ Total volume of water overflown/Volume of lead shot
$=(50 / 3) \pi /(1 / 6) \pi$
$=(50 / 3) \times 6=100$
6. A solid iron pole consists of a cylinder of height 220 cm and base diameter 24 cm , which is surmounted by another cylinder of height 60 cm and radius 8 cm . Find the mass of the pole, given that $1 \mathrm{~cm}^{3}$ of iron has approximately 8 g mass.

Solution:

Given the height of the big cylinder $(\mathrm{H})=220 \mathrm{~cm}$

The radius of the base $(\mathrm{R})=24 / 2=12 \mathrm{~cm}$

So, the volume of the big cylinder $=\pi R^{2} H$
$=\pi(12)^{2} \times 220 \mathrm{~cm}^{3}$
$=99565.8 \mathrm{~cm}^{3}$
Now, the height of the smaller cylinder $(\mathrm{h})=60 \mathrm{~cm}$
The radius of the base $(\mathrm{r})=8 \mathrm{~cm}$
So, the volume of the smaller cylinder $=\pi r^{2} h$
$=\pi(8)^{2} \times 60 \mathrm{~cm}^{3}$
$=12068.5 \mathrm{~cm}^{3}$
\therefore The volume of iron $=$ Volume of the big cylinder + Volume of the small cylinder
$=99565.8+12068.5$
$=111634.5 \mathrm{~cm}^{3}$
We know,
Mass $=$ Density x volume
So, the mass of the pole $=8 \times 111634.5$
$=893 \mathrm{Kg}$ (approx. $)$
7. A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder if the radius of the cylinder is $\mathbf{6 0 \mathrm { cm }}$ and its height is 180 cm .

Solution:

Here, the volume of water left will be $=$ Volume of the cylinder - Volume of solid
Given,
Radius of cone $=60 \mathrm{~cm}$,
Height of cone $=120 \mathrm{~cm}$
Radius of cylinder $=60 \mathrm{~cm}$
Height of cylinder $=180 \mathrm{~cm}$
Radius of hemisphere $=60 \mathrm{~cm}$
Now,
The total volume of solid $=$ Volume of Cone + Volume of the hemisphere

Volume of cone $=1 / 3 \pi \mathrm{r}^{2} \mathrm{~h}=1 / 3 \times \pi \times 60^{2} \times 120 \mathrm{~cm}^{3}=144 \times 10^{3} \pi \mathrm{~cm}^{3}$
Volume of hemisphere $=(2 / 3) \times \pi \times 60^{3} \mathrm{~cm}^{3}=144 \times 10^{3} \pi \mathrm{~cm}^{3}$
So, total volume of solid $=144 \times 10^{3} \pi \mathrm{~cm}^{3}+144 \times 10^{3} \pi \mathrm{~cm}^{3}=288 \times 10^{3} \pi \mathrm{~cm}^{3}$
Volume of cylinder $=\pi \times 60^{2} \times 180=648000=648 \times 10^{3} \pi \mathrm{~cm}^{3}$
Now, the volume of water left will be $=$ Volume of the cylinder - Volume of solid
$=(648-288) \times 10^{3} \times \pi=1.131 \mathrm{~m}^{3}$
8. A spherical glass vessel has a cylindrical neck 8 cm long and 2 cm in diameter; the diameter of the spherical part is 8.5 cm . By measuring the amount of water it holds, a child finds its volume to be $345 \mathrm{~cm}^{3}$. Check whether she is correct, taking the above as the inside measurements and $\pi=3.14$.

Solution:

Given,
For the cylinder part, Height $(\mathrm{h})=8 \mathrm{~cm}$ and Radius $(\mathrm{R})=(2 / 2) \mathrm{cm}=1 \mathrm{~cm}$
For the spherical part, Radius $(\mathrm{r})=(8.5 / 2)=4.25 \mathrm{~cm}$

Now, volume of this vessel $=$ Volume of cylinder + Volume of sphere
$=\pi \times(1)^{2 \times 8}+(4 / 3) \pi(4.25)^{3}$
$=346.51 \mathrm{~cm}^{3}$
Hence, the child's calculation is not correct.

