1. The following table shows the ages of the patients admitted to a hospital during a year:

Age (in years)	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of patients	6	11	21	23	14	5

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Solution:
To find out the modal class, let us the consider the class interval with high frequency.
Here, the greatest frequency $=23$, so the modal class $=35-45$,
Lower limit of modal class $=1=35$,
class width $(\mathrm{h})=10$,
$\mathrm{f}_{\mathrm{m}}=23$,
$\mathrm{f}_{1}=21$ and $\mathrm{f}_{2}=14$
The formula to find the mode is
Mode $=l+\left[\left(f_{m}-f_{l}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values in the formula, we get
Mode $=35+[(23-21) /(46-21-14)] \times 10$
$=35+(20 / 11)$
$=35+1.8$
$=36.8$ years
So the mode of the given data $=36.8$ years
Calculation of Mean:
First find the midpoint using the formula, $\mathrm{x}_{\mathrm{i}}=($ upper limit + lower limit $) / 2$

Class Interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid-point $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i} \mathrm{X}_{\mathrm{i}}}$
$5-15$	6	10	60

$15-25$	11	20	220
$25-35$	21	30	630
$35-45$	23	40	920
$45-55$	14	50	700
$55-65$	5	60	300
	Sum $\mathrm{f}_{\mathrm{i}}=80$		Sum $\mathrm{f}_{\mathrm{i} \mathrm{x}_{\mathrm{i}}=2830}$

The mean formula is

Mean $=\overline{\mathrm{x}}=\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} / \sum \mathrm{f}_{\mathrm{i}}$
$=2830 / 80$
$=35.375$ years
Therefore, the mean of the given data $=35.375$ years
2. The following data gives the information on the observed lifetimes (in hours) of $\mathbf{2 2 5}$
electrical components:

Lifetime (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.
Solution:
From the given data the modal class is 60-80.
Lower limit of modal class $=1=60$,
The frequencies are:
$\mathrm{f}_{\mathrm{m}}=61, \mathrm{f}_{1}=52, \mathrm{f}_{2}=38$ and $\mathrm{h}=20$

The formula to find the mode is
Mode $=l+\left[\left(f_{m}-f_{l}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values in the formula, we get
Mode $=60+[(61-52) /(122-52-38)] \times 20$

Mode $=60+[(9 \times 20) / 32]$
Mode $=60+(45 / 8)=60+5.625$
Therefore, modal lifetime of the components $=65.625$ hours .
3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure:

Expenditure (in Rs.)	Number of families
$1000-1500$	24
$1500-2000$	40
$2000-2500$	33
$2500-3000$	28
$3000-3500$	30
$3500-4000$	16
$4000-4500$	7

Solution:
Given data:
Modal class $=1500-2000$,
$l=1500$,
Frequencies:
$\mathrm{f}_{\mathrm{m}}=40 \mathrm{f}_{1}=24, \mathrm{f}_{2}=33$ and
$h=500$

Mode formula:
Mode $=l+\left[\left(f_{m}-f_{l}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values in the formula, we get

Mode $=1500+[(40-24) /(80-24-33)] \times 500$
Mode $=1500+[(16 \times 500) / 23]$
Mode $=1500+(8000 / 23)=1500+347.83$
Therefore, modal monthly expenditure of the families $=$ Rupees 1847.83
Calculation for mean:
First find the midpoint using the formula, $\mathrm{x}_{\mathrm{i}}=($ upper limit + lower limit $) / 2$
Let us assume a mean, (a) be 2750.

Class Interval	f_{i}	X_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}-\mathrm{a}$	$\mathrm{u}_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}} / \mathrm{h}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
1000-1500	24	1250	-1500	-3	-72
1500-2000	40	1750	-1000	-2	-80
2000-2500	33	2250	-500	-1	-33
2500-3000	28	$2750=\mathrm{a}$	0	0	0
3000-3500	30	3250	500	1	30
3500-4000	22	3750	1000	2	44
4000-4500	16	4250	1500	3	48
4500-5000	7	4750	2000	4	28
	$\mathrm{f}_{\mathrm{i}}=200$				$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-35$

The formula to calculate the mean,
Mean $=\bar{x}=\mathrm{a}+\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \sum \mathrm{f}_{\mathrm{i}}\right) \times \mathrm{h}$
Substitute the values in the given formula
$=2750+(-35 / 200) \times 500$
$=2750-87.50$
$=2662.50$
So, the mean monthly expenditure of the families $=$ Rs. 2662.50
4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures

No of students per teacher	Number of states / U.T
$15-20$	3
$20-25$	8
$25-30$	9
$30-35$	10
$35-40$	3
$40-45$	0
$45-50$	0
$50-55$	2

Solution:
Given data:
Modal class $=30-35$,
$l=30$,
Class width $(\mathrm{h})=5$,
$\mathrm{f}_{\mathrm{m}}=10, \mathrm{f}_{1}=9$ and $\mathrm{f}_{2}=3$
Mode Formula:
Mode $=l+\left[\left(f_{m}-f_{1}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values in the given formula
Mode $=30+[(10-9) /(20-9-3)] \times 5$
$=30+(5 / 8)$
$=30+0.625$
$=30.625$
Therefore, the mode of the given data $=30.625$
Calculation of mean:
Find the midpoint using the formula, $\mathrm{x}_{\mathrm{i}}=($ upper limit + lower limit $) / 2$

Class Interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid-point $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$15-20$	3	17.5	52.5
$20-25$	8	22.5	180.0
$25-30$	9	27.5	247.5
$30-35$	10	32.5	325.0
$35-40$	3	37.5	112.5
$40-45$	0	42.5	0
$45-50$	2	47.5	0
$50-55$	Sum $\mathrm{f}_{\mathrm{i}}=35$	52.5	105.0

> Mean $=\overline{\mathrm{x}}=\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} \sum \mathrm{f}_{\mathrm{i}}$
> $=1022.5 / 35$
> $=29.2$ (approx)

Therefore, mean $=29.2$
5. The given distribution shows the number of runs scored by some top batsmen of the world in one- day international cricket matches.

Run Scored	Number of Batsman
$3000-4000$	4
$4000-5000$	18
$5000-6000$	9
$6000-7000$	7
$7000-8000$	6
$8000-9000$	3
$9000-10000$	1

$10000-11000$	1

Find the mode of the data.
Solution:
Given data:
Modal class $=4000-5000$,
$1=4000$,
class width $(\mathrm{h})=1000$,
$\mathrm{f}_{\mathrm{m}}=18, \mathrm{f}_{1}=4$ and $\mathrm{f}_{2}=9$
Mode Formula:
Mode $=l+\left[\left(f_{m}-f_{l}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values
Mode $=4000+[(18-4) /(36-4-9)] \times 1000$
$=4000+(14000 / 23)$
$=4000+608.695$
$=4608.695$
$=4608.7$ (approximately)
Thus, the mode of the given data is 4608.7 runs.
6. A student noted the number of cars passing through a spot on a road for 100 periods each of $\mathbf{3}$ minutes and summarized it in the table given below. Find the mode of the data:

Number of cars	Frequency
$\mathbf{0 - 1 0}$	7
$10-20$	14
$20-30$	13
$30-40$	12
$40-50$	20

$50-60$	11
$60-70$	15
$70-80$	8

Solution:
Given Data:
Modal class $=40-50,1=40$,
Class width $(h)=10, \mathrm{f}_{\mathrm{m}}=20, \mathrm{f}_{1}=12$ and $\mathrm{f}_{2}=11$
Mode $=l+\left[\left(f_{m}-f_{l}\right) /\left(2 f_{m}-f_{l}-f_{2}\right)\right] \times h$
Substitute the values
Mode $=40+[(20-12) /(40-12-11)] \times 10$
$=40+(80 / 17)$
$=40+4.7$
$=44.7$
Thus, the mode of the given data is 44.7 cars.

