1. The following frequency distribution gives the monthly consumption of an electricity of 68 consumers in a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption(in units)	No. of customers
$65-85$	4
$85-105$	5
$105-125$	13
$125-145$	20
$145-165$	14
$165-185$	8
$185-205$	4

Solution:
Find the cumulative frequency of the given data as follows:

Class Interval	Frequency	Cumulative frequency
$65-85$	4	4
$85-105$	5	9
$105-125$	13	20
$125-145$	14	52
$145-165$	4	64
$165-185$	5	68
$185-205$	$\mathrm{~N}=68$	

From the table, it is observed that, $\mathrm{N}=68$ and hence $\mathrm{N} / 2=34$
Hence, the median class is $125-145$ with cumulative frequency $=42$

Where, $l=125, \mathrm{~N}=68$, $\mathrm{cf}=22, \mathrm{f}=20, \mathrm{~h}=20$
Median is calculated as follows:

$=125+[(34-22) / 20] \times 20$
$=125+12$
$=137$
Therefore, median $=137$
To calculate the mode:
Modal class $=125-145$,
f_{m} or $\mathrm{f}_{1}=20, \mathrm{f}_{0}=13, \mathrm{f}_{2}=14 \& \mathrm{~h}=20$
Mode formula:
Mode $=l+\left[\left(f_{1}-f_{0}\right) /\left(2 f_{1}-f_{0}-f_{2}\right)\right] \times h$
Mode $=125+[(20-13) /(40-13-14)] \times 20$
$=125+(140 / 13)$
$=125+10.77$
$=135.77$
Therefore, mode $=135.77$
Calculate the Mean:

Class Interval	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{d}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}-\mathbf{a}$	$\mathbf{u}_{\mathbf{i}}=\mathbf{d}_{i} / \mathbf{h}$	$\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$
$65-85$	4	75	-60	-3	-12
$85-105$	5	95	-40	-2	-10
$105-125$	13	115	-20	-1	-13
$125-145$	20	$135=\mathrm{a}$	0	0	0
$145-165$	14	155	20	1	14
$165-185$	8	175	40	2	16

$185-205$	4	195	60	3	12
	Sum $\mathbf{f}_{\mathrm{i}}=68$				Sum $\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathrm{i}}=7$

$\overline{\mathrm{x}}=\mathrm{a}+\mathrm{h}\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} / \sum \mathrm{f}_{\mathrm{i}}\right)=135+20(7 / 68)$
Mean $=137.05$
In this case, mean, median and mode are more/less equal in this distribution.
2. If the median of a distribution given below is 28.5 , find the value of $x \& y$.

Class Interval	Frequency
$\mathbf{0 - 1 0}$	5
$10-20$	x
$20-30$	20
$30-40$	15
$40-50$	y
$50-60$	5
Total	60

Solution:
Given data, $\mathrm{n}=60$
Median of the given data $=28.5$

CI	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	5	x	20	15	y	5
Cumulative frequency	5	$5+\mathrm{x}$	$25+\mathrm{x}$	$40+\mathrm{x}$	$40+\mathrm{x}+\mathrm{y}$	$45+\mathrm{x}+\mathrm{y}$

Where, N/2 $=30$
Median class is $20-30$ with a cumulative frequency $=25+x$
Lower limit of median class, $l=20$,
$c f=5+x$,
$\mathrm{f}=20 \& \mathrm{~h}=10$

Median $=$ 人 $+2-\geqslant \geqslant 2 \times h$
Substitute the values
$28.5=20+[(30-5-x) / 20] \times 10$
$8.5=(25-x) / 2$
$17=25-x$
Therefore, $\mathrm{x}=8$.
Now, from cumulative frequency, we can identify the value of $x+y$ as follows:
Since,
$60=45+x+y$
Now, substitute the value of x, to find y
$60=45+8+y$
$y=60-53$
$y=7$
Therefore, the value of $x=8$ and $y=7$.
3. The life insurance agent found the following data for the distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to the persons whose age is $\mathbf{1 8}$ years onwards but less than the $\mathbf{6 0}$ years.

Age (in years)	Number of policy holder
Below 20	2
Below 25	6
Below 30	24
Below 35	75
Below 40	89
Below 45	92
Below 50	98
Below 55	100
Below 60	

Solution:

Class interval	Frequency	Cumulative frequency
$15-20$	2	2
$20-25$	4	6
$25-30$	18	24
$30-35$	21	45
$35-40$	33	78
$40-45$	3	89
$45-50$	6	92
$50-55$	2	98
$55-60$		100

Given data: $\mathrm{N}=100$ and $\mathrm{N} / 2=50$
Median class $=35-40$
Then, $l=35, \mathrm{cf}=45, \mathrm{f}=33 \& \mathrm{~h}=5$

Median $=35+[(50-45) / 33] \times 5$
$=35+(25 / 33)$
$=35.76$
Therefore, the median age $=35.76$ years.
4. The lengths of 40 leaves in a plant are measured correctly to the nearest millimeter, and the data obtained is represented as in the following table:

Length (in mm)	Number of leaves
$118-126$	3
$127-135$	5
$136-144$	9

$145-153$	12
$154-162$	5
$163-171$	4
$172-180$	2

Find the median length of the leaves.
(Hint : The data needs to be converted to continuous classes for finding the median, since the formula assumes continuous classes. The classes then change to 117.5 - 126.5, 126.5-135.5, ..., 171.5-180.5.)

Solution:
Since the data are not continuous reduce 0.5 in the lower limit and add 0.5 in the upper limit.

Class Interval	Frequency	Cumulative frequency
$117.5-126.5$	3	3
$126.5-135.5$	5	8
$135.5-144.5$	9	17
$144.5-153.5$	12	29
$153.5-162.5$	5	34
$162.5-171.5$	4	38
$171.5-180.5$	2	40

So, the data obtained are:
$\mathrm{N}=40$ and $\mathrm{N} / 2=20$
Median class $=144.5-153.5$
then, $l=144.5$,
$\mathrm{cf}=17, \mathrm{f}=12 \& \mathrm{~h}=9$
Median $=$ 全 $+2-\hat{2}\rangle \times h$
Median $=144.5+[(20-17) / 12] \times 9$
$=144.5+(9 / 4)$
$=146.75 \mathrm{~mm}$

Therefore, the median length of the leaves $=146.75 \mathrm{~mm}$.
5. The following table gives the distribution of a lifetime of $\mathbf{4 0 0}$ neon lamps.

Lifetime (in hours)	Number of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Find the median lifetime of a lamp.
Solution:

Class Interval	Frequency	Cumulative
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	130
$3000-3500$	86	216
$3500-4000$	74	290
$4000-4500$	62	352
$4500-5000$	48	400

Data:
$\mathrm{N}=400$ \& $\mathrm{N} / 2=200$
Median class $=3000-3500$
Therefore, $l=3000, \mathrm{cf}=130$,
$\mathrm{f}=86 \& \mathrm{~h}=500$
Median $=$ 人 $+2-\geqslant \geqslant \geqslant \times h$
Median $=3000+[(200-130) / 86] \times 500$
$=3000+(35000 / 86)$
$=3000+406.98$
$=3406.98$
Therefore, the median lifetime of the lamps $=3406.98$ hours
6. 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabets in the surnames was obtained as follows:

Number of letters	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$
Number of surnames	6	30	40	16	4

Determine the median number of letters in the surnames. Find the mean number of letters in the surnames. Also, find the modal size of the surnames.

Solution:
To calculate median:

Class Interval	Frequency	Cumulative Frequency
$1-4$	6	6
$4-7$	30	30
$7-10$	10	76
$13-16$	4	96
$16-19$	4	100

Given:
$\mathrm{N}=100 \& \mathrm{~N} / 2=50$
Median class $=7-10$
Therefore, $l=7, \mathrm{cf}=36, \mathrm{f}=40 \& \mathrm{~h}=3$
Median $=$? $+2-\geqslant \geqslant>h$

Median $=7+[(50-36) / 40] \times 3$
Median $=7+(42 / 40)$
Median $=8.05$
Calculate the Mode:
Modal class $=7-10$,
Where, $l=7, \mathrm{f}_{1}=40, \mathrm{f}_{0}=30, \mathrm{f}_{2}=16 \& \mathrm{~h}=3$
Mode $=l+\left(\frac{f_{1-} f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \mathrm{h}$
Mode $=7+[(40-30) /(2 \times 40-30-16)] \times 3$
$=7+(30 / 34)$
$=7.88$
Therefore mode $=7.88$
Calculate the Mean:

Class Interval	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{x}_{\mathrm{i}}}$
$1-4$	6	2.5	15
$4-7$	30	5.5	165
$7-10$	40	8.5	340
$10-13$	16	11.5	184
$13-16$	4	14.5	58
$16-19$	4	17.5	70
	Sum $\mathrm{f}_{\mathrm{i}}=100$		Sum $\mathrm{f}_{\mathrm{i} \mathrm{X}_{\mathrm{i}}=832}$

Mean $=\overline{\mathrm{x}}=\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} / \sum \mathrm{f}_{\mathrm{i}}$
Mean $=832 / 100=8.32$
Therefore, mean $=8.32$
7. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

Weight(in kg)	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Number of students	2	3	8	6	6	3	2

Solution:

Class Interval	Frequency	Cumulative frequency
$40-45$	2	2
$45-50$	3	5
$50-55$	8	13
$55-60$	6	19
$60-65$	6	25
$65-70$	2	28
$70-75$		30

Given: $\mathrm{N}=30$ and $\mathrm{N} / 2=15$
Median class $=55-60$
$1=55, C_{f}=13, f=6 \& h=5$

Median $=55+[(15-13) / 6] \times 5$
$=55+(10 / 6)$
$=55+1.666$
$=56.67$
Therefore, the median weight of the students $=56.67$

