

EXERCISE 6.4

PAGE: 143

1. Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm² and 121 cm². If EF = 15.4 cm, find BC.

Solution: Given, $\triangle ABC \sim \triangle DEF$,

Area of $\triangle ABC = 64 \text{ cm}^2$

Area of $\Delta DEF = 121 \text{ cm}^2$

EF = 15.4 cm

 $\therefore \frac{Area \; of \; \Delta ABC}{Area \; of \; \Delta DEF} = \frac{AB^2}{DE^2}$

As we know, if two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides,

- $= AC^2/DF^2 = BC^2/EF^2$
- $: 64/121 = BC^2/EF^2$
- $\Rightarrow (8/11)^2 = (BC/15.4)^2$
- $\Rightarrow 8/11 = BC/15.4$
- \Rightarrow BC = 8×15.4/11
- \Rightarrow BC = 8 × 1.4

 \Rightarrow BC = 11.2 cm

2. Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.

Solution:

Given, ABCD is a trapezium with AB || DC. Diagonals AC and BD intersect each other at point O.

In $\triangle AOB$ and $\triangle COD$, we have

 $\angle 1 = \angle 2$ (Alternate angles)

 $\angle 3 = \angle 4$ (Alternate angles)

 $\angle 5 = \angle 6$ (Vertically opposite angle)

https://byjus.com

 $\therefore \Delta AOB \sim \Delta COD$ [AAA similarity criterion]

As we know, If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides. Therefore,

Area of (ΔAOB)/Area of (ΔCOD) = AB²/CD²

 $= (2CD)^2/CD^2 [:: AB = 2CD]$

 \therefore Area of (Δ AOB)/Area of (Δ COD)

 $= 4CD^{2}/CD^{2} = 4/1$

Hence, the required ratio of the area of $\triangle AOB$ and $\triangle COD = 4:1$

3. In the figure, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that area $(\Delta ABC)/area (\Delta DBC) = AO/DO$.

Solution:

Given, ABC and DBC are two triangles on the same base BC. AD intersects BC at O.

We have to prove: Area (ΔABC)/Area (ΔDBC) = AO/DO

Let us draw two perpendiculars AP and DM on line BC.

NCERT Solutions for Class 10 Maths Chapter 6 -Triangles

We know that area of a triangle = $1/2 \times Base \times Height$

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{\frac{1}{2} BC \times AP}{\frac{1}{2} BC \times DM} = \frac{AP}{DM}$$

In \triangle APO and \triangle DMO,

 $\angle APO = \angle DMO$ (Each 90°)

 $\angle AOP = \angle DOM$ (Vertically opposite angles)

 $\therefore \Delta APO \sim \Delta DMO$ (AA similarity criterion)

 $\therefore AP/DM = AO/DO$

 \Rightarrow Area (\triangle ABC)/Area (\triangle DBC) = AO/DO.

4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Say $\triangle ABC$ and $\triangle PQR$ are two similar triangles and equal in area

Now let us prove $\triangle ABC \cong \triangle PQR$.

Since, $\triangle ABC \sim \triangle PQR$

: Area of (ΔABC)/Area of (ΔPQR) = BC²/QR²

 \Rightarrow BC²/QR² =1 [Since, Area(\triangle ABC) = (\triangle PQR)

 $\Rightarrow BC^2/QR^2$

NCERT Solutions for Class 10 Maths Chapter 6 -Triangles

 \Rightarrow BC = QR

Similarly, we can prove that

AB = PQ and AC = PR

Thus, $\triangle ABC \cong \triangle PQR$ [SSS criterion of congruence]

5. D, E and F are respectively the mid-points of sides AB, BC and CA of \triangle ABC. Find the ratio of the area of \triangle DEF and \triangle ABC.

Solution:

D, E, and F are the mid-points of $\triangle ABC$ \therefore DE || AC and DE = (1/2) AC (Midpoint theorem) (1) In $\triangle BED$ and $\triangle BCA$ $\angle BED = \angle BCA$ (Corresponding angles) $\angle BDE = \angle BAC$ (Corresponding angles) $\angle EBD = \angle CBA$ (Common angles) $\therefore \Delta BED \sim \Delta BCA$ (AAA similarity criterion) ar (ΔBED) / ar (ΔBCA)=(DE/AC)² \Rightarrow ar (\triangle BED) / ar (\triangle BCA) = (1/4) [From (1)] \Rightarrow ar (\triangle BED) = (1/4) ar (\triangle BCA) Similarly, ar (ΔCFE) = (1/4) ar (CBA) and ar (ΔADF) = (1/4) ar (ΔADF) = (1/4) ar (ΔABC) Also, ar $(\Delta DEF) = ar (\Delta ABC) - [ar (\Delta BED) + ar (\Delta CFE) + ar (\Delta ADF)]$ \Rightarrow ar (Δ DEF) = ar (Δ ABC) - (3/4) ar (Δ ABC) = (1/4) ar (Δ ABC) \Rightarrow ar (Δ DEF) / ar (Δ ABC) = (1/4) 6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution:

Given: AM and DN are the medians of triangles ABC and DEF respectively and $\triangle ABC \sim \triangle DEF$.

Hence, proved.

7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution:

Given, ABCD is a square whose one diagonal is AC. \triangle APC and \triangle BQC are two equilateral triangles described on the diagonals AC and side BC of the square ABCD.

Area(Δ BQC) = $\frac{1}{2}$ Area(Δ APC)

Since, $\triangle APC$ and $\triangle BQC$ are both equilateral triangles, as per given,

 $\therefore \Delta APC \sim \Delta BQC$ [AAA similarity criterion]

 \therefore area(\triangle APC)/area(\triangle BQC) = (AC²/BC²) = AC²/BC²

Since, Diagonal = $\sqrt{2}$ side = $\sqrt{2}$ BC = AC

$$\left(\frac{\sqrt{2BC}}{BC}\right)^2 = 2$$

 \Rightarrow area(\triangle APC) = 2 × area(\triangle BQC)

$$\Rightarrow$$
 area(Δ BQC) = 1/2area(Δ APC)

Hence, proved.

Tick the correct answer and justify:

8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the area of triangles ABC and BDE is

(A) 2:1
(B) 1:2
(C) 4:1
(D) 1:4

Solution:

Given, $\triangle ABC$ and $\triangle BDE$ are two equilateral triangle. D is the midpoint of BC.

NCERT Solutions for Class 10 Maths Chapter 6 -Triangles

 \therefore BD = DC = 1/2BC

Let each side of triangle is 2*a*.

As, $\triangle ABC \sim \triangle BDE$

: Area(ΔABC)/Area(ΔBDE) = AB²/BD² = (2a)²/(a)² = 4a²/a² = 4/1 = 4:1

Hence, the correct answer is (C).

9. Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio

(A) 2:3
(B) 4:9
(C) 81:16
(D) 16:81

Solution:

Given, Sides of two similar triangles are in the ratio 4 : 9.

Let ABC and DEF are two similar triangles, such that,

 $\Delta ABC \sim \Delta DEF$

And AB/DE = AC/DF = BC/EF = 4/9

As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,

 $\therefore \text{Area}(\Delta \text{ABC})/\text{Area}(\Delta \text{DEF}) = \text{AB}^2/\text{DE}^2$

: Area(ΔABC)/Area(ΔDEF) = (4/9)² = 16/81 = 16:81

Hence, the correct answer is (D).

https://byjus.com