## EXERCISE 6.4

1. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find $B C$.

Solution: Given, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$,
Area of $\triangle \mathrm{ABC}=64 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{DEF}=121 \mathrm{~cm}^{2}$
$\mathrm{EF}=15.4 \mathrm{~cm}$

$$
\therefore \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{A B^{2}}{D E^{2}}
$$

As we know, if two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides,
$=\mathrm{AC}^{2} / \mathrm{DF}^{2}=\mathrm{BC}^{2} / \mathrm{EF}^{2}$
$\therefore 64 / 121=\mathrm{BC}^{2} / \mathrm{EF}^{2}$
$\Rightarrow(8 / 11)^{2}=(\mathrm{BC} / 15.4)^{2}$
$\Rightarrow 8 / 11=\mathrm{BC} / 15.4$
$\Rightarrow \mathrm{BC}=8 \times 15.4 / 11$
$\Rightarrow \mathrm{BC}=8 \times 1.4$
$\Rightarrow \mathrm{BC}=11.2 \mathrm{~cm}$
2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point $O$. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD.

## Solution:

Given, ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$. Diagonals AC and BD intersect each other at point O .


In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have
$\angle 1=\angle 2$ (Alternate angles)
$\angle 3=\angle 4$ (Alternate angles)
$\angle 5=\angle 6$ (Vertically opposite angle)
$\therefore \triangle \mathrm{AOB} \sim \Delta \mathrm{COD}$ [AAA similarity criterion]
As we know, If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides. Therefore,

Area of $(\triangle A O B) /$ Area of $(\triangle C O D)=\mathrm{AB}^{2} / \mathrm{CD}^{2}$
$=(2 \mathrm{CD})^{2} / \mathrm{CD}^{2}[\therefore \mathrm{AB}=2 \mathrm{CD}]$
$\therefore$ Area of $(\triangle \mathrm{AOB}) /$ Area of $(\Delta \mathrm{COD})$
$=4 \mathrm{CD}^{2} / \mathrm{CD}^{2}=4 / 1$
Hence, the required ratio of the area of $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}=4: 1$
3. In the figure, ABC and DBC are two triangles on the same base BC . If AD intersects BC at O , show that area $(\triangle A B C) /$ area $(\triangle D B C)=A O / D O$.


## Solution:

Given, ABC and DBC are two triangles on the same base BC . AD intersects BC at O .
We have to prove: $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DBC})=\mathrm{AO} / \mathrm{DO}$
Let us draw two perpendiculars AP and DM on line BC.


We know that area of a triangle $=1 / 2 \times$ Base $\times$ Height
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AP}}{\frac{1}{2} \mathrm{BC} \times \mathrm{DM}}=\frac{\mathrm{AP}}{\mathrm{DM}}$
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOP}=\angle \mathrm{DOM}$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (AA similarity criterion)
$\therefore \mathrm{AP} / \mathrm{DM}=\mathrm{AO} / \mathrm{DO}$
$\Rightarrow$ Area $(\triangle \mathrm{ABC}) /$ Area $(\triangle \mathrm{DBC})=\mathrm{AO} / \mathrm{DO}$.
4. If the areas of two similar triangles are equal, prove that they are congruent.

## Solution:

Say $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are two similar triangles and equal in area


Now let us prove $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$\therefore$ Area of $(\triangle \mathrm{ABC}) /$ Area of $(\triangle \mathrm{PQR})=\mathrm{BC}^{2} / \mathrm{QR}^{2}$
$\Rightarrow \mathrm{BC}^{2} / \mathrm{QR}^{2}=1[$ Since, $\operatorname{Area}(\triangle \mathrm{ABC})=(\triangle \mathrm{PQR})$
$\Rightarrow \mathrm{BC}^{2} / \mathrm{QR}^{2}$
$\Rightarrow \mathrm{BC}=\mathrm{QR}$
Similarly, we can prove that
$\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{AC}=\mathrm{PR}$
Thus, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ [SSS criterion of congruence]
5. $D, E$ and $F$ are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle \mathrm{ABC}$.

## Solution:



D, E , and F are the mid-points of $\triangle \mathrm{ABC}$
$\therefore \mathrm{DE} \| \mathrm{AC}$ and
$\mathrm{DE}=(1 / 2) \mathrm{AC}$ (Midpoint theorem) .... (1)
In $\triangle \mathrm{BED}$ and $\triangle \mathrm{BCA}$
$\angle \mathrm{BED}=\angle \mathrm{BCA}$ (Corresponding angles)
$\angle \mathrm{BDE}=\angle \mathrm{BAC}$ (Corresponding angles)
$\angle E B D=\angle C B A$ (Common angles)
$\therefore \triangle \mathrm{BED} \sim \triangle \mathrm{BCA}$ (AAA similarity criterion)
ar ( $\triangle \mathrm{BED}) /$ ar $(\triangle \mathrm{BCA})=(\mathrm{DE} / \mathrm{AC})^{2}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED}) / \operatorname{ar}(\triangle \mathrm{BCA})=(1 / 4)[$ From (1)]
$\Rightarrow$ ar $(\triangle \mathrm{BED})=(1 / 4)$ ar $(\triangle \mathrm{BCA})$
Similarly,
ar $(\triangle \mathrm{CFE})=(1 / 4)$ ar $(\mathrm{CBA})$ and ar $(\triangle \mathrm{ADF})=(1 / 4)$ ar $(\triangle \mathrm{ADF})=(1 / 4)$ ar $(\triangle \mathrm{ABC})$
Also,
ar $(\triangle \mathrm{DEF})=$ ar $(\triangle \mathrm{ABC})-[\operatorname{ar}(\triangle \mathrm{BED})+$ ar $(\triangle \mathrm{CFE})+$ ar $(\triangle \mathrm{ADF})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=$ ar $(\triangle \mathrm{ABC})-(3 / 4)$ ar $(\triangle \mathrm{ABC})=(1 / 4)$ ar $(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF}) /$ ar $(\triangle \mathrm{ABC})=(1 / 4)$
6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

## Solution:

Given: AM and DN are the medians of triangles ABC and DEF respectively and $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.


We have to prove: $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (Given)
$\therefore \operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\left(\mathrm{AB}^{2} / \mathrm{DE}^{2}\right)$
and, $\mathrm{AB} / \mathrm{DE}=\mathrm{BC} / \mathrm{EF}=\mathrm{CA} / \mathrm{FD}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{EF}}=\frac{\mathrm{CD}}{\mathrm{FD}}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$,
Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \angle \mathrm{B}=\angle \mathrm{E}$
$\mathrm{AB} / \mathrm{DE}=\mathrm{BM} / \mathrm{EN}$ [Already Proved in equation (i)]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ [SAS similarity criterion]
$\Rightarrow \mathrm{AB} / \mathrm{DE}=\mathrm{AM} / \mathrm{DN}$
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{DEN}$
As the areas of two similar triangles are proportional to the squares of the corresponding sides.
$\therefore \operatorname{area}(\triangle \mathrm{ABC}) / \operatorname{area}(\Delta \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Hence, proved.
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

## Solution:



Given, ABCD is a square whose one diagonal is $\mathrm{AC} . \triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are two equilateral triangles described on the diagonals AC and side BC of the square ABCD .
$\operatorname{Area}(\triangle \mathrm{BQC})=1 / 2 \operatorname{Area}(\triangle \mathrm{APC})$
Since, $\triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are both equilateral triangles, as per given,
$\therefore \triangle \mathrm{APC} \sim \triangle \mathrm{BQC}$ [AAA similarity criterion]
$\therefore \operatorname{area}(\triangle \mathrm{APC}) / \operatorname{area}(\triangle \mathrm{BQC})=\left(\mathrm{AC}^{2} / \mathrm{BC}^{2}\right)=\mathrm{AC}^{2} / \mathrm{BC}^{2}$
Since, Diagonal $=\sqrt{ } 2$ side $=\sqrt{ } 2 B C=A C$

$$
\left(\frac{\sqrt{2} B C}{B C}\right)^{2}=2
$$

$\Rightarrow \operatorname{area}(\triangle \mathrm{APC})=2 \times \operatorname{area}(\triangle \mathrm{BQC})$
$\Rightarrow \operatorname{area}(\triangle \mathrm{BQC})=1 / 2 \operatorname{area}(\triangle \mathrm{APC})$
Hence, proved.
Tick the correct answer and justify:
8. ABC and BDE are two equilateral triangles such that $D$ is the mid-point of $B C$. Ratio of the area of triangles $A B C$ and $B D E$ is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

## Solution:

Given, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangle. D is the midpoint of BC .

$\therefore \mathrm{BD}=\mathrm{DC}=1 / 2 \mathrm{BC}$
Let each side of triangle is $2 a$.
As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{BDE}$
$\therefore$ Area $(\triangle \mathrm{ABC}) / \mathrm{Area}(\triangle \mathrm{BDE})=\mathrm{AB}^{2} / \mathrm{BD}^{2}=(2 a)^{2} /(a)^{2}=4 a^{2} / a^{2}=4 / 1=4: 1$
Hence, the correct answer is (C).
9. Sides of two similar triangles are in the ratio $4: 9$. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

## Solution:

Given, Sides of two similar triangles are in the ratio 4 : 9 .


Let ABC and DEF are two similar triangles, such that,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
And $\mathrm{AB} / \mathrm{DE}=\mathrm{AC} / \mathrm{DF}=\mathrm{BC} / \mathrm{EF}=4 / 9$
As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,
$\therefore$ Area $(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}$
$\therefore \operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\Delta \mathrm{DEF})=(4 / 9)^{2}=16 / 81=16: 81$
Hence, the correct answer is (D).

