EXERCISE 6.1

1. Fill in the blanks using correct word given in the brackets:-
(i) All circles are \qquad . (congruent, similar)

Answer: Similar
(ii) All squares are \qquad . (similar, congruent)

Answer: Similar
(iii) All \qquad triangles are similar. (isosceles, equilateral)

Answer: Equilateral
(iv) Two polygons of the same number of sides are similar, if (a) their corresponding angles are \qquad and
(b) their corresponding sides are \qquad . (equal, proportional)

Answer: (a) Equal
(b) Proportional
2. Give two different examples of pair of
(i) Similar figures
(ii) Non-similar figures

Solution:

(i) Example of two similar figure;

Two Equilateral Triangle

Two Rectangle
(ii) Example of two Non-similar figure;

Triangle

Rhombus

Rectangle

Trapezium
3. State whether the following quadrilaterals are similar or not:

Solution:
From the given two figures, we can see their corresponding angles are different or unequal. Therefore, they are not similar.

1. In figure. (i) and (ii), DE $\|$ BC. Find EC in (i) and AD in (ii).

Solution:

(i) Given, in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$ [Using Basic proportionality theorem]
$\Rightarrow 1.5 / 3=1 / \mathrm{EC}$
$\Rightarrow \mathrm{EC}=3 / 1.5$
$\mathrm{EC}=3 \times 10 / 15=2 \mathrm{~cm}$
Hence, $\mathrm{EC}=2 \mathrm{~cm}$.
(ii) Given, in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$ [Using Basic proportionality theorem]
$\Rightarrow \mathrm{AD} / 7.2=1.8 / 5.4$
$\Rightarrow \mathrm{AD}=1.8 \times 7.2 / 5.4=(18 / 10) \times(72 / 10) \times(10 / 54)=24 / 10$
$\Rightarrow \mathrm{AD}=2.4$
Hence, $\mathrm{AD}=2.4 \mathrm{~cm}$.
2. E and F are points on the sides $P Q$ and $P R$, respectively of a $\triangle P Q R$. For each of the following cases, state whether EF || QR.
(i) $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2.4 \mathrm{~cm}$
(ii) $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$
(iii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=\mathbf{0 . 1 8} \mathrm{cm}$ and $\mathrm{PF}=0.63 \mathrm{~cm}$

Solution:

Given, in $\triangle P Q R, E$ and F are two points on side $P Q$ and $P R$, respectively. See the figure below;

(i) Given, $\mathrm{PE}=3.9 \mathrm{~cm}, \mathrm{EQ}=3 \mathrm{~cm}, \mathrm{PF}=3.6 \mathrm{~cm}$ and $\mathrm{FR}=2,4 \mathrm{~cm}$

Therefore, by using Basic proportionality theorem, we get,
$\mathrm{PE} / \mathrm{EQ}=3.9 / 3=39 / 30=13 / 10=1.3$
And $\mathrm{PF} / \mathrm{FR}=3.6 / 2.4=36 / 24=3 / 2=1.5$
So, we get, $\mathrm{PE} / \mathrm{EQ} \neq \mathrm{PF} / \mathrm{FR}$
Hence, EF is not parallel to QR.
(ii) Given, $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{QE}=4.5 \mathrm{~cm}, \mathrm{PF}=8 \mathrm{~cm}$ and $\mathrm{RF}=9 \mathrm{~cm}$

Therefore, by using Basic proportionality theorem, we get,
$\mathrm{PE} / \mathrm{QE}=4 / 4.5=40 / 45=8 / 9$
And, $\mathrm{PF} / \mathrm{RF}=8 / 9$
So, we get here,
$\mathrm{PE} / \mathrm{QE}=\mathrm{PF} / \mathrm{RF}$
Hence, EF is parallel to QR.
(iii) Given, $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=0.36 \mathrm{~cm}$

From the figure,
$\mathrm{EQ}=\mathrm{PQ}-\mathrm{PE}=1.28-0.18=1.10 \mathrm{~cm}$
And, $\mathrm{FR}=\mathrm{PR}-\mathrm{PF}=2.56-0.36=2.20 \mathrm{~cm}$
So, $\mathrm{PE} / \mathrm{EQ}=0.18 / 1.10=18 / 110=9 / 55$
And, $\mathrm{PE} / \mathrm{FR}=0.36 / 2.20=36 / 220=9 / 55$
So, we get here,
$\mathrm{PE} / \mathrm{EQ}=\mathrm{PF} / \mathrm{FR}$
Hence, EF is parallel to QR.
3. In the figure, if $L M \| C B$ and $L N \| C D$, prove that $A M / A B=A N / A D$

Solution:

In the given figure, we can see, $\mathrm{LM} \| \mathrm{CB}$,
By using basic proportionality theorem, we get,
AM/AB = AL/AC \qquad
Similarly, given, $\mathrm{LN} \| \mathrm{CD}$ and using basic proportionality theorem,
$\therefore \mathrm{AN} / \mathrm{AD}=\mathrm{AL} / \mathrm{AC}$.
From equation (i) and (ii), we get,
$\mathrm{AM} / \mathrm{AB}=\mathrm{AN} / \mathrm{AD}$
Hence, proved.

4. In the figure, $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DF}|\mid \mathrm{AE}$. Prove that $\mathrm{BF} / \mathrm{FE}=\mathrm{BE} / \mathrm{EC}$

Solution:

In $\triangle \mathrm{ABC}$, given as, $\mathrm{DE} \| \mathrm{AC}$
Thus, by using Basic Proportionality Theorem, we get,
$\therefore \mathrm{BD} / \mathrm{DA}=\mathrm{BE} / \mathrm{EC}$
In $\triangle \mathrm{BAE}$, given as, $\mathrm{DF} \| \mathrm{AE}$
Thus, by using Basic Proportionality Theorem, we get,
$\therefore \mathrm{BD} / \mathrm{DA}=\mathrm{BF} / \mathrm{FE}$
From equation (i) and (ii), we get
$\mathrm{BE} / \mathrm{EC}=\mathrm{BF} / \mathrm{FE}$

Hence, proved.
5. In the figure, $\mathrm{DE} \| \mathrm{OQ}$ and $\mathrm{DF} \| \mathrm{OR}$, show that $\mathrm{EF} \| \mathrm{QR}$.

Solution:

Given,
In $\triangle \mathrm{PQO}, \mathrm{DE} \| \mathrm{OQ}$
So by using Basic Proportionality Theorem,
PD/DO $=\mathrm{PE} / \mathrm{EQ}$.
Again given, in $\triangle \mathrm{POR}, \mathrm{DF} \| \mathrm{OR}$,
So by using Basic Proportionality Theorem,
$\mathrm{PD} / \mathrm{DO}=\mathrm{PF} / \mathrm{FR}$.
From equation (i) and (ii), we get,
PE/EQ $=\mathrm{PF} /$ FR
Therefore, by converse of Basic Proportionality Theorem,
$\mathrm{EF} \| \mathrm{QR}$, in $\triangle \mathrm{PQR}$.
6. In the figure, A, B and C are points on $O P, O Q$ and $O R$ respectively such that $A B \| P Q$ and $A C \| P R$. Show that $\mathrm{BC} \| \mathrm{QR}$.

Solution:

Given here,
In $\triangle \mathrm{OPQ}, \mathrm{AB} \| \mathrm{PQ}$
By using Basic Proportionality Theorem,
$\mathrm{OA} / \mathrm{AP}=\mathrm{OB} / \mathrm{BQ}$ \qquad

Also given,
In $\triangle \mathrm{OPR}, \mathrm{AC} \|$ PR
By using Basic Proportionality Theorem
$\therefore \mathrm{OA} / \mathrm{AP}=\mathrm{OC} / \mathrm{CR}$.
From equation (i) and (ii), we get,
$\mathrm{OB} / \mathrm{BQ}=\mathrm{OC} / \mathrm{CR}$
Therefore, by converse of Basic Proportionality Theorem,
In $\triangle \mathrm{OQR}, \mathrm{BC} \| \mathrm{QR}$.
7. Using Basic proportionality theorem, prove that a line drawn through the mid-points of one side of a triangle parallel to another side bisects the third side. (Recall that you have proved it in Class IX).

Solution:

Given, in $\triangle \mathrm{ABC}, \mathrm{D}$ is the midpoint of AB such that $\mathrm{AD}=\mathrm{DB}$.
A line parallel to BC intersects AC at E as shown in above figure such that $\mathrm{DE} \| \mathrm{BC}$.
We have to prove that E is the mid point of AC .
Since, D is the mid-point of $A B$.
$\therefore \mathrm{AD}=\mathrm{DB}$
$\Rightarrow \mathrm{AD} / \mathrm{DB}=1$
In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$,
By using Basic Proportionality Theorem,
Therefore, $\mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$
From equation (i), we can write,
$\Rightarrow 1=\mathrm{AE} / \mathrm{EC}$
$\therefore \mathrm{AE}=\mathrm{EC}$
Hence, proved, E is the midpoint of AC .
8. Using Converse of basic proportionality theorem, prove that the line joining the mid-points of any two sides of a triangle is parallel to the third side. (Recall that you have done it in Class IX).

Solution:

Given, in $\triangle \mathrm{ABC}, \mathrm{D}$ and E are the mid points of AB and AC , respectively, such that, $\mathrm{AD}=\mathrm{BD}$ and $\mathrm{AE}=\mathrm{EC}$.

We have to prove that: $\mathrm{DE} \| \mathrm{BC}$.
Since, D is the midpoint of $A B$
$\therefore \mathrm{AD}=\mathrm{DB}$
$\Rightarrow \mathrm{AD} / \mathrm{BD}=1$

Also given, E is the mid-point of AC .
$\therefore \mathrm{AE}=\mathrm{EC}$
$\Rightarrow \mathrm{AE} / \mathrm{EC}=1$
From equation (i) and (ii), we get,
$\mathrm{AD} / \mathrm{BD}=\mathrm{AE} / \mathrm{EC}$
By converse of Basic Proportionality Theorem,
DE || BC
Hence, proved.
9. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O . Show that $A O / B O=C O / D O$.

Solution:

Given, ABCD is a trapezium where $\mathrm{AB} \| \mathrm{DC}$ and diagonals AC and BD intersect each other at O .

We have to prove, $\mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$
From the point O , draw a line EO touching AD at E , in such a way that,
EO || DC || AB
In $\triangle \mathrm{ADC}$, we have $\mathrm{OE} \| \mathrm{DC}$
Therefore, by using Basic Proportionality Theorem
$\mathrm{AE} / \mathrm{ED}=\mathrm{AO} / \mathrm{CO}$ \qquad (i)

Now, In $\triangle \mathrm{ABD}, \mathrm{OE} \| \mathrm{AB}$
Therefore, by using Basic Proportionality Theorem
$\mathrm{DE} / \mathrm{EA}=\mathrm{DO} / \mathrm{BO}$
From equation (i) and (ii), we get,
$\mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO}$
$\Rightarrow \mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$
Hence, proved.
10. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $A O / B O=C O / D O$. Show that ABCD is a trapezium.

Solution:

Given, Quadrilateral ABCD where AC and BD intersect each other at O such that,
$\mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$.

We have to prove here, ABCD is a trapezium

From the point O , draw a line EO touching AD at E , in such a way that,
EO || DC || AB
In $\triangle \mathrm{DAB}, \mathrm{EO} \| \mathrm{AB}$
Therefore, by using Basic Proportionality Theorem
$\mathrm{DE} / \mathrm{EA}=\mathrm{DO} / \mathrm{OB}$
Also, given,
$\mathrm{AO} / \mathrm{BO}=\mathrm{CO} / \mathrm{DO}$
$\Rightarrow \mathrm{AO} / \mathrm{CO}=\mathrm{BO} / \mathrm{DO}$
$\Rightarrow \mathrm{CO} / \mathrm{AO}=\mathrm{DO} / \mathrm{BO}$
$\Rightarrow \mathrm{DO} / \mathrm{OB}=\mathrm{CO} / \mathrm{AO}$
From equation (i) and (ii), we get
$\mathrm{DE} / \mathrm{EA}=\mathrm{CO} / \mathrm{AO}$
Therefore, by using converse of Basic Proportionality Theorem,
EO || DC also EO || AB
$\Rightarrow \mathrm{AB} \| \mathrm{DC}$.
Hence, quadrilateral $A B C D$ is a trapezium with $A B \| C D$.

EXERCISE 6.3

1. State which pairs of triangles in the figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

Solution:
(i) Given, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
$\angle \mathrm{B}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{R}=40^{\circ}$
Therefore, by AAA similarity criterion,
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
(ii) Given, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{AB} / \mathrm{QR}=2 / 4=1 / 2$,
$\mathrm{BC} / \mathrm{RP}=2.5 / 5=1 / 2$,
$\mathrm{CA} / \mathrm{PA}=3 / 6=1 / 2$
By SSS similarity criterion,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{QRP}$
(iii) Given, in $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$,
$\mathrm{LM}=2.7, \mathrm{MP}=2, \mathrm{LP}=3, \mathrm{EF}=5, \mathrm{DE}=4, \mathrm{DF}=6$
$\mathrm{MP} / \mathrm{DE}=2 / 4=1 / 2$
$\mathrm{PL} / \mathrm{DF}=3 / 6=1 / 2$
$\mathrm{LM} / \mathrm{EF}=2.7 / 5=27 / 50$
Here , MP/DE $=\mathrm{PL} / \mathrm{DF} \neq \mathrm{LM} / \mathrm{EF}$
Therefore, $\triangle \mathrm{LMP}$ and $\triangle \mathrm{DEF}$ are not similar.
(iv) In $\triangle \mathrm{MNL}$ and $\triangle \mathrm{QPR}$, it is given,
$\mathrm{MN} / \mathrm{QP}=\mathrm{ML} / \mathrm{QR}=1 / 2$
$\angle \mathrm{M}=\angle \mathrm{Q}=70^{\circ}$
Therefore, by SAS similarity criterion
$\therefore \Delta \mathrm{MNL} \sim \Delta \mathrm{QPR}$
(v) In $\triangle A B C$ and $\triangle D E F$, given that,
$\mathrm{AB}=2.5, \mathrm{BC}=3, \angle \mathrm{~A}=80^{\circ}, \mathrm{EF}=6, \mathrm{DF}=5, \angle \mathrm{~F}=80^{\circ}$
Here, $\mathrm{AB} / \mathrm{DF}=2.5 / 5=1 / 2$
And, BC/EF $=3 / 6=1 / 2$
$\Rightarrow \angle \mathrm{B} \neq \angle \mathrm{F}$
Hence, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are not similar.
(vi) In $\triangle \mathrm{DEF}$, by sum of angles of triangles, we know that,
$\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=180^{\circ}$
$\Rightarrow 70^{\circ}+80^{\circ}+\angle \mathrm{F}=180^{\circ}$
$\Rightarrow \angle \mathrm{F}=180^{\circ}-70^{\circ}-80^{\circ}$
$\Rightarrow \angle \mathrm{F}=30^{\circ}$
Similarly, In $\triangle \mathrm{PQR}$,
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180($ Sum of angles of $\Delta)$
$\Rightarrow \angle \mathrm{P}+80^{\circ}+30^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{P}=180^{\circ}-80^{\circ}-30^{\circ}$
$\Rightarrow \angle \mathrm{P}=70^{\circ}$
Now, comparing both the triangles, $\triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$, we have
$\angle \mathrm{D}=\angle \mathrm{P}=70^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{Q}=80^{\circ}$
$\angle \mathrm{F}=\angle \mathrm{R}=30^{\circ}$
Therefore, by AAA similarity criterion,
Hence, $\triangle \mathrm{DEF} \sim \triangle \mathrm{PQR}$
2. In figure 6.35, $\triangle \mathrm{ODC} \sim \triangle \mathrm{OBA}, \angle \mathrm{BOC}=125^{\circ}$ and $\angle \mathrm{CDO}=70^{\circ}$. Find $\angle \mathrm{DOC}, \angle \mathrm{DCO}$ and $\angle \mathrm{OAB}$.

Solution:

As we can see from the figure, DOB is a straight line.
Therefore, $\angle \mathrm{DOC}+\angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle \mathrm{DOC}=180^{\circ}-125^{\circ}\left(\right.$ Given, $\left.\angle \mathrm{BOC}=125^{\circ}\right)$
$=55^{\circ}$
In $\triangle \mathrm{DOC}$, sum of the measures of the angles of a triangle is 180°
Therefore, $\angle \mathrm{DCO}+\angle \mathrm{CDO}+\angle \mathrm{DOC}=180^{\circ}$
$\Rightarrow \angle \mathrm{DCO}+70^{\circ}+55^{\circ}=180^{\circ}\left(\right.$ Given,$\left.\angle \mathrm{CDO}=70^{\circ}\right)$
$\Rightarrow \angle \mathrm{DCO}=55^{\circ}$
It is given that, $\triangle \mathrm{ODC} \sim \Delta \mathrm{OBA}$,
Therefore, $\triangle \mathrm{ODC} \sim \Delta \mathrm{OBA}$.
Hence, corresponding angles are equal in similar triangles
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$
$\Rightarrow \angle \mathrm{OAB}=55^{\circ}$
3. Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $A O / O C=O B / O D$

Solution:

In $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$,
$A B \| C D$, thus alternate interior angles will be equal,
$\therefore \angle \mathrm{CDO}=\angle \mathrm{ABO}$
Similarly,
$\angle \mathrm{DCO}=\angle \mathrm{BAO}$
Also, for the two triangles $\triangle \mathrm{DOC}$ and $\triangle \mathrm{BOA}$, vertically opposite angles will be equal;
$\therefore \angle \mathrm{DOC}=\angle \mathrm{BOA}$
Hence, by AAA similarity criterion,
$\triangle \mathrm{DOC} \sim \triangle \mathrm{BOA}$
Thus, the corresponding sides are proportional.
$\mathrm{DO} / \mathrm{BO}=\mathrm{OC} / \mathrm{OA}$
$\Rightarrow \mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$
Hence, proved.
4. In the fig.6.36, $Q R / Q S=Q T / P R$ and $\angle 1=\angle 2$. Show that $\triangle P Q S \sim \Delta T Q R$.

Solution:

In $\triangle P Q R$,
$\angle \mathrm{PQR}=\angle \mathrm{PRQ}$
$\therefore \mathrm{PQ}=\mathrm{PR}$
Given,
QR/QS = QT/PRUsing equation (i), we get
$\mathrm{QR} / \mathrm{QS}=\mathrm{QT} / \mathrm{QP}$. \qquad
In $\triangle \mathrm{PQS}$ and $\triangle T Q R$, by equation (ii),
$\mathrm{QR} / \mathrm{QS}=\mathrm{QT} / \mathrm{QP}$
$\angle \mathrm{Q}=\angle \mathrm{Q}$
$\therefore \triangle \mathrm{PQS} \sim \Delta \mathrm{TQR}$ [By SAS similarity criterion]
5. S and T are point on sides $P R$ and $Q R$ of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.

Solution:

Given, S and T are point on sides PR and QR of $\triangle \mathrm{PQR}$
And $\angle \mathrm{P}=\angle \mathrm{RTS}$.

In $\triangle \mathrm{RPQ}$ and $\triangle \mathrm{RTS}$,
$\angle \mathrm{RTS}=\angle \mathrm{QPS}$ (Given)
$\angle \mathrm{R}=\angle \mathrm{R}$ (Common angle)
$\therefore \triangle \mathrm{RPQ} \sim \Delta \mathrm{RTS}$ (AA similarity criterion)
6. In the figure, if $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$, show that $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.

Solution:

Given, $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$.
$\therefore \mathrm{AB}=\mathrm{AC}[\mathrm{By} \mathrm{CPCT}]$
And, $\mathrm{AD}=\mathrm{AE}[\mathrm{By} \mathrm{CPCT}]$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$, dividing eq.(ii) by eq(i),
$\mathrm{AD} / \mathrm{AB}=\mathrm{AE} / \mathrm{AC}$
$\angle \mathrm{A}=\angle \mathrm{A}$ [Common angle]
$\therefore \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ [SAS similarity criterion]
7. In the figure, altitudes $A D$ and $C E$ of $\triangle A B C$ intersect each other at the point P. Show that:

(i) $\triangle \mathrm{AEP} \sim \triangle \mathrm{CDP}$
(ii) $\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) \triangle AEP $\sim \triangle \mathrm{ADB}$
(iv) $\triangle \mathrm{PDC} \sim \triangle \mathrm{BEC}$

Solution:

Given, altitudes AD and CE of $\triangle \mathrm{ABC}$ intersect each other at the point P .
(i) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{CDP}$,
$\angle \mathrm{AEP}=\angle \mathrm{CDP}\left(90^{\circ}\right.$ each $)$
$\angle \mathrm{APE}=\angle \mathrm{CPD}$ (Vertically opposite angles)
Hence, by AA similarity criterion,
$\triangle \mathrm{AEP} \sim \Delta \mathrm{CDP}$
(ii) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBE}$,
$\angle \mathrm{ADB}=\angle \mathrm{CEB}\left(90^{\circ}\right.$ each $)$
$\angle \mathrm{ABD}=\angle \mathrm{CBE}$ (Common Angles)
Hence, by AA similarity criterion,
$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBE}$
(iii) In $\triangle \mathrm{AEP}$ and $\triangle \mathrm{ADB}$,
$\angle \mathrm{AEP}=\angle \mathrm{ADB}\left(90^{\circ}\right.$ each $)$
$\angle \mathrm{PAE}=\angle \mathrm{DAB}$ (Common Angles)
Hence, by AA similarity criterion,
$\triangle \mathrm{AEP} \sim \triangle \mathrm{ADB}$
(iv) In $\triangle \mathrm{PDC}$ and $\triangle \mathrm{BEC}$,
$\angle \mathrm{PDC}=\angle \mathrm{BEC}\left(90^{\circ}\right.$ each $)$
$\angle \mathrm{PCD}=\angle \mathrm{BCE}$ (Common angles)
Hence, by AA similarity criterion,
$\Delta \mathrm{PDC} \sim \Delta \mathrm{BEC}$
8. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Show that $\triangle A B E \sim$ \triangle CFB.

Solution:

Given, E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F . Consider the figure below,

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,
$\angle \mathrm{A}=\angle \mathrm{C}$ (Opposite angles of a parallelogram)
$\angle \mathrm{AEB}=\angle \mathrm{CBF}$ (Alternate interior angles as $\mathrm{AE} \mathrm{\|} \mathrm{BC}$)
$\therefore \triangle \mathrm{ABE} \sim \Delta \mathrm{CFB}$ (AA similarity criterion)
9. In the figure, $A B C$ and AMP are two right triangles, right angled at B and M, respectively, prove that:

(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\mathbf{C A} / \mathbf{P A}=\mathbf{B C} / \mathrm{MP}$

Solution:

Given, ABC and AMP are two right triangles, right angled at B and M , respectively.
(i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$, we have,
$\angle \mathrm{CAB}=\angle \mathrm{MAP}$ (common angles)
$\angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ}\left(\right.$ each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (AA similarity criterion)
(ii) As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (AA similarity criterion)

If two triangles are similar then the corresponding sides are always equal,
Hence, CA/PA = BC/MP
10. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides $A B$ and $F E$ of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \sim \triangle F E G$, Show that:
(i) $\mathrm{CD} / \mathrm{GH}=\mathrm{AC} / \mathrm{FG}$
(ii) $\triangle \mathrm{DCB} \sim \triangle \mathrm{HGE}$
(iii) $\triangle \mathrm{DCA} \sim \Delta H G F$

Solution:

Given, CD and GH are respectively the bisectors of $\angle \mathrm{ACB}$ and $\angle \mathrm{EGF}$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$, respectively.

(i) From the given condition,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{FEG}$.
$\therefore \angle \mathrm{A}=\angle \mathrm{F}, \angle \mathrm{B}=\angle \mathrm{E}$, and $\angle \mathrm{ACB}=\angle \mathrm{FGE}$
Since, $\angle \mathrm{ACB}=\angle \mathrm{FGE}$
$\therefore \angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Angle bisector)
And, $\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Angle bisector)
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{FGH}$,
$\angle \mathrm{A}=\angle \mathrm{F}$
$\angle \mathrm{ACD}=\angle \mathrm{FGH}$
$\therefore \triangle \mathrm{ACD} \sim \Delta \mathrm{FGH}$ (AA similarity criterion)
$\Rightarrow \mathrm{CD} / \mathrm{GH}=\mathrm{AC} / \mathrm{FG}$
(ii) In $\triangle \mathrm{DCB}$ and $\triangle \mathrm{HGE}$,
$\angle \mathrm{DCB}=\angle \mathrm{HGE}$ (Already proved)
$\angle \mathrm{B}=\angle \mathrm{E}$ (Already proved)
$\therefore \triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$ (AA similarity criterion)
(iii) In $\triangle \mathrm{DCA}$ and $\triangle \mathrm{HGF}$,
$\angle \mathrm{ACD}=\angle \mathrm{FGH}$ (Already proved)
$\angle \mathrm{A}=\angle \mathrm{F}$ (Already proved)
$\therefore \triangle \mathrm{DCA} \sim \triangle \mathrm{HGF}(\mathrm{AA}$ similarity criterion)
11. In the following figure, E is a point on side $C B$ produced of an isosceles triangle $A B C$ with $A B=A C$. If $A D \perp$ $B C$ and $E F \perp A C$, prove that $\triangle \mathrm{ABD} \sim \triangle E C F$.

Solution:

Given, ABC is an isosceles triangle.
$\therefore \mathrm{AB}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{ABD}=\angle \mathrm{ECF}$
In $\triangle A B D$ and $\triangle E C F$,
$\angle \mathrm{ADB}=\angle \mathrm{EFC}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{BAD}=\angle \mathrm{CEF}$ (Already proved)
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$ (using AA similarity criterion)
12. Sides $A B$ and $B C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $Q R$ and median PM of $\triangle P Q R$ (see Fig 6.41). Show that $\triangle A B C \sim \triangle P Q R$.

Solution:

Given, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}, \mathrm{AB}, \mathrm{BC}$ and median AD of $\triangle \mathrm{ABC}$ are proportional to sides PQ, QR and median PM of $\triangle \mathrm{PQR}$
i.e. $\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}=\mathrm{AD} / \mathrm{PM}$

We have to prove: $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
As we know here,
$\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}=\mathrm{AD} / \mathrm{PM}$
$\frac{A B}{P Q}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}=\frac{A D}{P M}$.
$\Rightarrow A B / P Q=B C / Q R=A D / P M(D$ is the midpoint of $B C . M$ is the midpoint of $Q R)$
$\Rightarrow \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}$ [SSS similarity criterion]
$\therefore \angle \mathrm{ABD}=\angle \mathrm{PQM}$ [Corresponding angles of two similar triangles are equal]
$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{PQR}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$
$\mathrm{AB} / \mathrm{PQ}=\mathrm{BC} / \mathrm{QR}$
$\angle \mathrm{ABC}=\angle \mathrm{PQR}$
From equation (i) and (ii), we get,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [SAS similarity criterion]
13. D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle B A C$. Show that $\mathrm{CA}^{2}=\mathrm{CB} . \mathrm{CD}$ Solution:

Given, D is a point on the side BC of a triangle ABC such that $\angle \mathrm{ADC}=\angle \mathrm{BAC}$.

In $\triangle \mathrm{ADC}$ and $\triangle \mathrm{BAC}$,
$\angle \mathrm{ADC}=\angle \mathrm{BAC}$ (Already given)
$\angle \mathrm{ACD}=\angle \mathrm{BCA}$ (Common angles)
$\therefore \triangle \mathrm{ADC} \sim \triangle \mathrm{BAC}$ (AA similarity criterion)
We know that corresponding sides of similar triangles are in proportion.
$\therefore \mathrm{CA} / \mathrm{CB}=\mathrm{CD} / \mathrm{CA}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CB} . \mathrm{CD}$.
Hence, proved.
14. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides $P Q$ and $P R$ and median PM of another triangle PQR. Show that $\triangle A B C \sim \triangle P Q R$.

Solution:

Given: Two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ in which AD and PM are medians such that;
$\mathrm{AB} / \mathrm{PQ}=\mathrm{AC} / \mathrm{PR}=\mathrm{AD} / \mathrm{PM}$
We have to prove, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

Let us construct first: Produce AD to E so that $\mathrm{AD}=\mathrm{DE}$. Join CE, Similarly produce PM to N such that $\mathrm{PM}=\mathrm{MN}$, also Join RN.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDE}$, we have
$\mathrm{AD}=\mathrm{DE}$ [By Construction.]
$\mathrm{BD}=\mathrm{DC}[$ Since, AP is the median]
and, $\angle \mathrm{ADB}=\angle \mathrm{CDE}$ [Vertically opposite angles]
$\therefore \triangle \mathrm{ABD} \cong \triangle \mathrm{CDE}$ [SAS criterion of congruence]
$\Rightarrow \mathrm{AB}=\mathrm{CE}[\mathrm{By} \mathrm{CPCT}]$
Also, in $\triangle \mathrm{PQM}$ and $\triangle \mathrm{MNR}$,
$\mathrm{PM}=\mathrm{MN}$ [By Construction.]
$\mathrm{QM}=\mathrm{MR}$ [Since, PM is the median]
and, $\angle \mathrm{PMQ}=\angle \mathrm{NMR}$ [Vertically opposite angles]
$\therefore \Delta \mathrm{PQM}=\triangle \mathrm{MNR}$ [SAS criterion of congruence]
$\Rightarrow \mathrm{PQ}=\mathrm{RN}[\mathrm{CPCT}]$
Now, $\mathrm{AB} / \mathrm{PQ}=\mathrm{AC} / \mathrm{PR}=\mathrm{AD} / \mathrm{PM}$
From equation (i) and (ii),
$\Rightarrow \mathrm{CE} / \mathrm{RN}=\mathrm{AC} / \mathrm{PR}=\mathrm{AD} / \mathrm{PM}$
$\Rightarrow \mathrm{CE} / \mathrm{RN}=\mathrm{AC} / \mathrm{PR}=2 \mathrm{AD} / 2 \mathrm{PM}$
$\Rightarrow \mathrm{CE} / \mathrm{RN}=\mathrm{AC} / \mathrm{PR}=\mathrm{AE} / \mathrm{PN}[$ Since $2 \mathrm{AD}=\mathrm{AE}$ and $2 \mathrm{PM}=\mathrm{PN}]$
$\therefore \triangle \mathrm{ACE} \sim \triangle \mathrm{PRN}$ [SSS similarity criterion]
Therefore, $\angle 2=\angle 4$

Similarly, $\angle 1=\angle 3$
$\therefore \angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{P}$
Now, in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$, we have
$\mathrm{AB} / \mathrm{PQ}=\mathrm{AC} / \mathrm{PR}$ (Already given)
From equation (iii),
$\angle \mathrm{A}=\angle \mathrm{P}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ [SAS similarity criterion]
15. A vertical pole of a length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Solution:

Given, Length of the vertical pole $=6 \mathrm{~m}$
Shadow of the pole $=4 \mathrm{~m}$
Let Height of tower $=h \mathrm{~m}$
Length of shadow of the tower $=28 \mathrm{~m}$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\angle \mathrm{C}=\angle \mathrm{E}$ (angular elevation of sum)
$\angle \mathrm{B}=\angle \mathrm{F}=90^{\circ}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (AA similarity criterion)
$\therefore \mathrm{AB} / \mathrm{DF}=\mathrm{BC} / \mathrm{EF}$ (If two triangles are similar corresponding sides are proportional)
$\therefore 6 / h=4 / 28$
$\Rightarrow \mathrm{h}=(6 \times 28) / 4$
$\Rightarrow h=6 \times 7$
$\Rightarrow h=42 \mathrm{~m}$
Hence, the height of the tower is 42 m .
16. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \sim \triangle P Q R$ prove that $A B / P Q$ = AD/PM.

Solution:

Given, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

We know that the corresponding sides of similar triangles are in proportion.
$\therefore \mathrm{AB} / \mathrm{PQ}=\mathrm{AC} / \mathrm{PR}=\mathrm{BC} / \mathrm{QR}$.
Also, $\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R}$ \qquad
Since AD and PM are medians, they will divide their opposite sides.
$\therefore \mathrm{BD}=\mathrm{BC} / 2$ and $\mathrm{QM}=\mathrm{QR} / 2$ \qquad
From equations (i) and (iii), we get
$\mathrm{AB} / \mathrm{PQ}=\mathrm{BD} / \mathrm{QM}$ \qquad (iv)

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,
From equation (ii), we have
$\angle B=\angle Q$
From equation (iv), we have,
$\mathrm{AB} / \mathrm{PQ}=\mathrm{BD} / \mathrm{QM}$
$\therefore \triangle \mathrm{ABD} \sim \triangle \mathrm{PQM}$ (SAS similarity criterion)
$\Rightarrow \mathrm{AB} / \mathrm{PQ}=\mathrm{BD} / \mathrm{QM}=\mathrm{AD} / \mathrm{PM}$

EXERCISE 6.4

1. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be, respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find $B C$.

Solution: Given, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$,
Area of $\triangle \mathrm{ABC}=64 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{DEF}=121 \mathrm{~cm}^{2}$
$\mathrm{EF}=15.4 \mathrm{~cm}$

$$
\therefore \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle D E F}=\frac{A B^{2}}{D E^{2}}
$$

As we know, if two triangles are similar, ratio of their areas are equal to the square of the ratio of their corresponding sides,
$=\mathrm{AC}^{2} / \mathrm{DF}^{2}=\mathrm{BC}^{2} / \mathrm{EF}^{2}$
$\therefore 64 / 121=\mathrm{BC}^{2} / \mathrm{EF}^{2}$
$\Rightarrow(8 / 11)^{2}=(\mathrm{BC} / 15.4)^{2}$
$\Rightarrow 8 / 11=\mathrm{BC} / 15.4$
$\Rightarrow \mathrm{BC}=8 \times 15.4 / 11$
$\Rightarrow \mathrm{BC}=8 \times 1.4$
$\Rightarrow \mathrm{BC}=11.2 \mathrm{~cm}$
2. Diagonals of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles AOB and COD.

Solution:

Given, ABCD is a trapezium with $\mathrm{AB} \| \mathrm{DC}$. Diagonals AC and BD intersect each other at point O .

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$, we have
$\angle 1=\angle 2$ (Alternate angles)
$\angle 3=\angle 4$ (Alternate angles)
$\angle 5=\angle 6$ (Vertically opposite angle)
$\therefore \Delta \mathrm{AOB} \sim \Delta \mathrm{COD}$ [AAA similarity criterion]
As we know, If two triangles are similar then the ratio of their areas are equal to the square of the ratio of their corresponding sides. Therefore,

Area of $(\triangle A O B) /$ Area of $(\triangle C O D)=\mathrm{AB}^{2} / \mathrm{CD}^{2}$
$=(2 \mathrm{CD})^{2} / \mathrm{CD}^{2}[\therefore \mathrm{AB}=2 \mathrm{CD}]$
\therefore Area of $(\triangle \mathrm{AOB}) /$ Area of $(\Delta \mathrm{COD})$
$=4 \mathrm{CD}^{2} / \mathrm{CD}^{2}=4 / 1$
Hence, the required ratio of the area of $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}=4: 1$
3. In the figure, ABC and DBC are two triangles on the same base BC . If AD intersects BC at O , show that area $(\triangle A B C) /$ area $(\triangle D B C)=A O / D O$.

Solution:

Given, ABC and DBC are two triangles on the same base BC . AD intersects BC at O .
We have to prove: $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DBC})=\mathrm{AO} / \mathrm{DO}$
Let us draw two perpendiculars AP and DM on line BC.

We know that area of a triangle $=1 / 2 \times$ Base \times Height
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AP}}{\frac{1}{2} \mathrm{BC} \times \mathrm{DM}}=\frac{\mathrm{AP}}{\mathrm{DM}}$
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOP}=\angle \mathrm{DOM}$ (Vertically opposite angles)
$\therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}$ (AA similarity criterion)
$\therefore \mathrm{AP} / \mathrm{DM}=\mathrm{AO} / \mathrm{DO}$
\Rightarrow Area $(\triangle \mathrm{ABC}) /$ Area $(\triangle \mathrm{DBC})=\mathrm{AO} / \mathrm{DO}$.
4. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Say $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are two similar triangles and equal in area

Now let us prove $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$.
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
\therefore Area of $(\triangle \mathrm{ABC}) /$ Area of $(\triangle \mathrm{PQR})=\mathrm{BC}^{2} / \mathrm{QR}^{2}$
$\Rightarrow \mathrm{BC}^{2} / \mathrm{QR}^{2}=1[$ Since, $\operatorname{Area}(\triangle \mathrm{ABC})=(\triangle \mathrm{PQR})$
$\Rightarrow \mathrm{BC}^{2} / \mathrm{QR}^{2}$
$\Rightarrow \mathrm{BC}=\mathrm{QR}$
Similarly, we can prove that
$\mathrm{AB}=\mathrm{PQ}$ and $\mathrm{AC}=\mathrm{PR}$
Thus, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ [SSS criterion of congruence]
5. D, E and F are respectively the mid-points of sides $A B, B C$ and $C A$ of $\triangle A B C$. Find the ratio of the area of $\triangle D E F$ and $\triangle \mathrm{ABC}$.

Solution:

D, E , and F are the mid-points of $\triangle \mathrm{ABC}$
$\therefore \mathrm{DE} \| \mathrm{AC}$ and
$\mathrm{DE}=(1 / 2) \mathrm{AC}$ (Midpoint theorem) (1)
In $\triangle \mathrm{BED}$ and $\triangle \mathrm{BCA}$
$\angle \mathrm{BED}=\angle \mathrm{BCA}$ (Corresponding angles)
$\angle \mathrm{BDE}=\angle \mathrm{BAC}$ (Corresponding angles)
$\angle E B D=\angle C B A$ (Common angles)
$\therefore \triangle \mathrm{BED} \sim \triangle \mathrm{BCA}$ (AAA similarity criterion)
ar ($\triangle \mathrm{BED}) /$ ar $(\triangle \mathrm{BCA})=(\mathrm{DE} / \mathrm{AC})^{2}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BED}) / \operatorname{ar}(\triangle \mathrm{BCA})=(1 / 4)[$ From (1)]
\Rightarrow ar $(\triangle \mathrm{BED})=(1 / 4)$ ar $(\triangle \mathrm{BCA})$
Similarly,
ar $(\triangle \mathrm{CFE})=(1 / 4)$ ar (CBA) and ar $(\triangle \mathrm{ADF})=(1 / 4)$ ar $(\triangle \mathrm{ADF})=(1 / 4)$ ar $(\triangle \mathrm{ABC})$
Also,
ar $(\triangle \mathrm{DEF})=$ ar $(\triangle \mathrm{ABC})-[\operatorname{ar}(\triangle \mathrm{BED})+$ ar $(\triangle \mathrm{CFE})+$ ar $(\triangle \mathrm{ADF})]$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF})=$ ar $(\triangle \mathrm{ABC})-(3 / 4)$ ar $(\triangle \mathrm{ABC})=(1 / 4)$ ar $(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DEF}) /$ ar $(\triangle \mathrm{ABC})=(1 / 4)$
6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Solution:

Given: AM and DN are the medians of triangles ABC and DEF respectively and $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.

We have to prove: $\operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Since, $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ (Given)
$\therefore \operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\left(\mathrm{AB}^{2} / \mathrm{DE}^{2}\right)$
and, $\mathrm{AB} / \mathrm{DE}=\mathrm{BC} / \mathrm{EF}=\mathrm{CA} / \mathrm{FD}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{EF}}=\frac{\mathrm{CD}}{\mathrm{FD}}$
In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{DEN}$,
Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \angle \mathrm{B}=\angle \mathrm{E}$
$\mathrm{AB} / \mathrm{DE}=\mathrm{BM} / \mathrm{EN}$ [Already Proved in equation (i)]
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ [SAS similarity criterion]
$\Rightarrow \mathrm{AB} / \mathrm{DE}=\mathrm{AM} / \mathrm{DN}$
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{DEN}$
As the areas of two similar triangles are proportional to the squares of the corresponding sides.
$\therefore \operatorname{area}(\triangle \mathrm{ABC}) / \operatorname{area}(\Delta \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}=\mathrm{AM}^{2} / \mathrm{DN}^{2}$
Hence, proved.
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

Solution:

Given, ABCD is a square whose one diagonal is $\mathrm{AC} . \triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are two equilateral triangles described on the diagonals AC and side BC of the square ABCD .
$\operatorname{Area}(\triangle \mathrm{BQC})=1 / 2 \operatorname{Area}(\triangle \mathrm{APC})$
Since, $\triangle \mathrm{APC}$ and $\triangle \mathrm{BQC}$ are both equilateral triangles, as per given,
$\therefore \triangle \mathrm{APC} \sim \triangle \mathrm{BQC}$ [AAA similarity criterion]
$\therefore \operatorname{area}(\triangle \mathrm{APC}) / \operatorname{area}(\triangle \mathrm{BQC})=\left(\mathrm{AC}^{2} / \mathrm{BC}^{2}\right)=\mathrm{AC}^{2} / \mathrm{BC}^{2}$
Since, Diagonal $=\sqrt{ } 2$ side $=\sqrt{ } 2 B C=A C$

$$
\left(\frac{\sqrt{2} B C}{B C}\right)^{2}=2
$$

$\Rightarrow \operatorname{area}(\triangle \mathrm{APC})=2 \times \operatorname{area}(\triangle \mathrm{BQC})$
$\Rightarrow \operatorname{area}(\triangle \mathrm{BQC})=1 / 2 \operatorname{area}(\triangle \mathrm{APC})$
Hence, proved.
Tick the correct answer and justify:
8. ABC and BDE are two equilateral triangles such that D is the mid-point of $B C$. Ratio of the area of triangles ABC and BDE is
(A) $2: 1$
(B) $1: 2$
(C) $4: 1$
(D) $1: 4$

Solution:

Given, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangle. D is the midpoint of BC .

$\therefore \mathrm{BD}=\mathrm{DC}=1 / 2 \mathrm{BC}$
Let each side of triangle is $2 a$.
As, $\triangle \mathrm{ABC} \sim \triangle \mathrm{BDE}$
$\therefore \operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{BDE})=\mathrm{AB}^{2} / \mathrm{BD}^{2}=(2 a)^{2} /(a)^{2}=4 a^{2} / a^{2}=4 / 1=4: 1$
Hence, the correct answer is (C).
9. Sides of two similar triangles are in the ratio $4: 9$. Areas of these triangles are in the ratio
(A) $2: 3$
(B) $4: 9$
(C) $81: 16$
(D) $16: 81$

Solution:

Given, Sides of two similar triangles are in the ratio 4 : 9 .

Let ABC and DEF are two similar triangles, such that,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
And $\mathrm{AB} / \mathrm{DE}=\mathrm{AC} / \mathrm{DF}=\mathrm{BC} / \mathrm{EF}=4 / 9$
As, the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides,
\therefore Area $(\triangle \mathrm{ABC}) / \operatorname{Area}(\triangle \mathrm{DEF})=\mathrm{AB}^{2} / \mathrm{DE}^{2}$
$\therefore \operatorname{Area}(\triangle \mathrm{ABC}) / \operatorname{Area}(\Delta \mathrm{DEF})=(4 / 9)^{2}=16 / 81=16: 81$
Hence, the correct answer is (D).

EXERCISE 6.5

1. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$
(iii) $50 \mathrm{~cm}, 80 \mathrm{~cm}, 100 \mathrm{~cm}$
(iv) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$

Solution:

(i) Given, sides of the triangle are $7 \mathrm{~cm}, 24 \mathrm{~cm}$, and 25 cm .

Squaring the lengths of the sides of the, we will get 49, 576, and 625.
$49+576=625$
$(7)^{2}+(24)^{2}=(25)^{2}$
Therefore, the above equation satisfies, Pythagoras theorem. Hence, it is right angled triangle.
Length of Hypotenuse $=25 \mathrm{~cm}$
(ii) Given, sides of the triangle are $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm .

Squaring the lengths of these sides, we will get 9,64 , and 36 .
Clearly, $9+36 \neq 64$
Or, $3^{2}+6^{2} \neq 8^{2}$
Therefore, the sum of the squares of the lengths of two sides is not equal to the square of the length of the hypotenuse.
Hence, the given triangle does not satisfies Pythagoras theorem.
(iii) Given, sides of triangle's are $50 \mathrm{~cm}, 80 \mathrm{~cm}$, and 100 cm .

Squaring the lengths of these sides, we will get 2500, 6400, and 10000.
However, $2500+6400 \neq 10000$
Or, $50^{2}+80^{2} \neq 100^{2}$
As you can see, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side.

Therefore, the given triangle does not satisfies Pythagoras theorem.
Hence, it is not a right triangle.
(iv) Given, sides are $13 \mathrm{~cm}, 12 \mathrm{~cm}$, and 5 cm .

Squaring the lengths of these sides, we will get 169,144 , and 25.
Thus, $144+25=169$
Or, $12^{2}+5^{2}=13^{2}$
The sides of the given triangle are satisfying Pythagoras theorem.

Therefore, it is a right triangle.
Hence, length of the hypotenuse of this triangle is 13 cm .
2. PQR is a triangle right angled at P and M is a point on QR such that $\mathrm{PM} \perp \mathrm{QR}$. Show that $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$.

Solution:

Given, $\triangle \mathrm{PQR}$ is right angled at P is a point on QR such that $\mathrm{PM} \perp \mathrm{QR}$

We have to prove, $\mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$
In $\triangle \mathrm{PQM}$, by Pythagoras theorem
$\mathrm{PQ}^{2}=\mathrm{PM}^{2}+\mathrm{QM}^{2}$
Or, $\mathrm{PM}^{2}=\mathrm{PQ}^{2}-\mathrm{QM}^{2}$
In $\triangle \mathrm{PMR}$, by Pythagoras theorem
$\mathrm{PR}^{2}=\mathrm{PM}^{2}+\mathrm{MR}^{2}$
Or, $\mathrm{PM}^{2}=\mathrm{PR}^{2}-\mathrm{MR}^{2}$
Adding equation, (i) and (ii), we get,
$2 \mathrm{PM}^{2}=\left(\mathrm{PQ}^{2}+\mathrm{PM}^{2}\right)-\left(\mathrm{QM}^{2}+\mathrm{MR}^{2}\right)$
$=\mathrm{QR}^{2}-\mathrm{QM}^{2}-\mathrm{MR}^{2} \quad\left[\because \mathrm{QR}^{2}=\mathrm{PQ}^{2}+\mathrm{PR}^{2}\right]$
$=(\mathrm{QM}+\mathrm{MR})^{2}-\mathrm{QM}^{2}-\mathrm{MR}^{2}$
$=2 \mathrm{QM} \times \mathrm{MR}$
$\therefore \mathrm{PM}^{2}=\mathrm{QM} \times \mathrm{MR}$
3. In Figure, ABD is a triangle right angled at A and $\mathrm{AC} \perp \mathrm{BD}$. Show that
(i) $\mathbf{A B}^{2}=\mathbf{B C} \times \mathbf{B D}$
(ii) $\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC}$
(iii) $\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$

Solution:

(i) In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CAB}$,
$\angle \mathrm{DAB}=\angle \mathrm{ACB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$ (Common angles)
$\therefore \triangle \mathrm{ADB} \sim \Delta \mathrm{CAB}$ [AA similarity criterion]
$\Rightarrow \mathrm{AB} / \mathrm{CB}=\mathrm{BD} / \mathrm{AB}$
$\Rightarrow \mathrm{AB}^{2}=\mathrm{CB} \times \mathrm{BD}$
(ii) Let $\angle \mathrm{CAB}=\mathrm{x}$

In $\triangle \mathrm{CBA}$,
$\angle \mathrm{CBA}=180^{\circ}-90^{\circ}-\mathrm{x}$
$\angle \mathrm{CBA}=90^{\circ}-\mathrm{x}$
Similarly, in $\triangle C A D$
$\angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{CBA}$
$=90^{\circ}-\mathrm{x}$
$\angle \mathrm{CDA}=180^{\circ}-90^{\circ}-\left(90^{\circ}-\mathrm{x}\right)$
$\angle \mathrm{CDA}=\mathrm{x}$
In $\triangle \mathrm{CBA}$ and $\triangle \mathrm{CAD}$, we have
$\angle \mathrm{CBA}=\angle \mathrm{CAD}$
$\angle \mathrm{CAB}=\angle \mathrm{CDA}$
$\angle \mathrm{ACB}=\angle \mathrm{DCA}\left(\right.$ Each $\left.90^{\circ}\right)$
$\therefore \triangle \mathrm{CBA} \sim \Delta \mathrm{CAD}$ [AAA similarity criterion]
$\Rightarrow \mathrm{AC} / \mathrm{DC}=\mathrm{BC} / \mathrm{AC}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{DC} \times \mathrm{BC}$
(iii) In $\triangle \mathrm{DCA}$ and $\triangle \mathrm{DAB}$,
$\angle \mathrm{DCA}=\angle \mathrm{DAB}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{CDA}=\angle \mathrm{ADB}$ (common angles)
$\therefore \triangle \mathrm{DCA} \sim \triangle \mathrm{DAB}$ [AA similarity criterion]
$\Rightarrow \mathrm{DC} / \mathrm{DA}=\mathrm{DA} / \mathrm{DA}$
$\Rightarrow \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}$
4. ABC is an isosceles triangle right angled at C . Prove that $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$.

Solution:

Given, $\triangle \mathrm{ABC}$ is an isosceles triangle right angled at C .

In $\triangle \mathrm{ACB}, \angle \mathrm{C}=90^{\circ}$
$\mathrm{AC}=\mathrm{BC}$ (By isosceles triangle property)
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}[\mathrm{By}$ Pythagoras theorem]
$=\mathrm{AC}^{2}+\mathrm{AC}^{2}[$ Since, $\mathrm{AC}=\mathrm{BC}]$
$\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
5. ABC is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$, prove that ABC is a right triangle.

Solution:

Given, $\triangle \mathrm{ABC}$ is an isosceles triangle having $\mathrm{AC}=\mathrm{BC}$ and $\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$

In $\triangle \mathrm{ACB}$,
$\mathrm{AC}=\mathrm{BC}$
$\mathrm{AB}^{2}=2 \mathrm{AC}^{2}$
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{AC}^{2}$
$=\mathrm{AC}^{2}+\mathrm{BC}^{2}[$ Since, $\mathrm{AC}=\mathrm{BC}]$
Hence, by Pythagoras theorem $\triangle \mathrm{ABC}$ is right angle triangle.
6. ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Solution:

Given, ABC is an equilateral triangle of side 2 a .

Draw, $\mathrm{AD} \perp \mathrm{BC}$
In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$,
$\mathrm{AB}=\mathrm{AC}$
$\mathrm{AD}=\mathrm{AD}$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}\left[\right.$ Both are $\left.90^{\circ}\right]$
Therefore, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ by RHS congruence.
Hence, BD = DC [by CPCT]
In right angled $\triangle \mathrm{ADB}$,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
$(2 a)^{2}=\mathrm{AD}^{2}+a^{2}$
$\Rightarrow \mathrm{AD}^{2=} 4 a^{2}-a^{2}$
$\Rightarrow \mathrm{AD}^{2}=3 a^{2}$
$\Rightarrow A D=\sqrt{3} a$
7. Prove that the sum of the squares of the sides of rhombus is equal to the sum of the squares of its diagonals.

Solution:

Given, ABCD is a rhombus whose diagonals AC and BD intersect at O .

We have to prove, as per the question,
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Since, the diagonals of a rhombus bisect each other at right angles.
Therefore, $\mathrm{AO}=\mathrm{CO}$ and $\mathrm{BO}=\mathrm{DO}$
In $\triangle \mathrm{AOB}$,
$\angle \mathrm{AOB}=90^{\circ}$
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. (i) $[\mathrm{By}$ Pythagoras theorem]
Similarly,
$\mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{DO}^{2}$
$\mathrm{DC}^{2}=\mathrm{DO}^{2}+\mathrm{CO}^{2}$
$\mathrm{BC}^{2}=\mathrm{CO}^{2}+\mathrm{BO}^{2}$
Adding equations (i) + (ii) + (iii) + (iv), we get,
$\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+\mathrm{BC}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{BO}^{2}+\mathrm{DO}^{2}+\mathrm{CO}^{2}\right)$
$=4 \mathrm{AO}^{2}+4 \mathrm{BO}^{2}[$ Since, $\mathrm{AO}=\mathrm{CO}$ and $\mathrm{BO}=\mathrm{DO}]$
$=(2 \mathrm{AO})^{2}+(2 \mathrm{BO})^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
Hence, proved.
8. In Fig. 6.54, O is a point in the interior of a triangle.

$\mathrm{ABC}, \mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$. Show that:
(i) $\mathbf{O A}^{2}+\mathbf{O B}^{2}+\mathbf{O C}^{2}-\mathbf{O D}^{2}-\mathbf{O E}^{2}-\mathbf{O F}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$,
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$.

Solution:

Given, in $\triangle A B C, O$ is a point in the interior of a triangle.
And $\mathrm{OD} \perp \mathrm{BC}, \mathrm{OE} \perp \mathrm{AC}$ and $\mathrm{OF} \perp \mathrm{AB}$.
Join OA, OB and OC

(i) By Pythagoras theorem in $\triangle \mathrm{AOF}$, we have
$\mathrm{OA}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}$
Similarly, in $\triangle B O D$
$\mathrm{OB}^{2}=\mathrm{OD}^{2}+\mathrm{BD}^{2}$
Similarly, in $\triangle \mathrm{COE}$
$\mathrm{OC}^{2}=\mathrm{OE}^{2}+\mathrm{EC}^{2}$
Adding these equations,
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}=\mathrm{OF}^{2}+\mathrm{AF}^{2}+\mathrm{OD}^{2}+\mathrm{BD}^{2}+\mathrm{OE}^{2}+\mathrm{EC}^{2}$
$\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}-\mathrm{OD}^{2}-\mathrm{OE}^{2}-\mathrm{OF}^{2}=\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}$.
(ii) $\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{EC}^{2}=\left(\mathrm{OA}^{2}-\mathrm{OE}^{2}\right)+\left(\mathrm{OC}^{2}-\mathrm{OD}^{2}\right)+\left(\mathrm{OB}^{2}-\mathrm{OF}^{2}\right)$
$\therefore \mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{CD}^{2}+\mathrm{BF}^{2}$.
9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.

Solution:

Given, a ladder 10 m long reaches a window 8 m above the ground.

Let BA be the wall and AC be the ladder,
Therefore, by Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$10^{2}=8^{2}+\mathrm{BC}^{2}$
$\mathrm{BC}^{2}=100-64$
$\mathrm{BC}^{2}=36$
$B C=6 m$
Therefore, the distance of the foot of the ladder from the base of the wall is 6 m .
10. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Solution:

Given, a guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end.

Let AB be the pole and AC be the wire.
By Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$24^{2}=18^{2}+$ BC 2
$\mathrm{BC}^{2}=576-324$
$\mathrm{BC}^{2}=252$
$B C=6 \sqrt{ } 7 \mathrm{~m}$
Therefore, the distance from the base is $6 \sqrt{7} \mathrm{~m}$.
11. An aeroplane leaves an airport and flies due north at a speed of $1,000 \mathrm{~km}$ per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of $\mathbf{1 , 2 0 0} \mathrm{km}$ per hour. How far apart will be the two planes after
$1 \frac{1}{2}$
hours?
Solution:
Given,
Speed of first aeroplane $=1000 \mathrm{~km} / \mathrm{hr}$
Distance covered by first aeroplane flying due north in
$1 \frac{1}{2}$
hours $(\mathrm{OA})=1000 \times 3 / 2 \mathrm{~km}=1500 \mathrm{~km}$
Speed of second aeroplane $=1200 \mathrm{~km} / \mathrm{hr}$
Distance covered by second aeroplane flying due west in
$1 \frac{1}{2}$
hours $(O B)=1200 \times 3 / 2 \mathrm{~km}=1800 \mathrm{~km}$

In right angle $\triangle \mathrm{AOB}$, by Pythagoras Theorem,
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
$\Rightarrow \mathrm{AB}^{2}=(1500)^{2}+(1800)^{2}$
$\Rightarrow \mathrm{AB}=\sqrt{ }(2250000+3240000)$
$=\sqrt{5490000}$
$\Rightarrow \mathrm{AB}=300 \sqrt{ } 61 \mathrm{~km}$
Hence, the distance between two aeroplanes will be $300 \sqrt{ } 61 \mathrm{~km}$.
12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is $\mathbf{1 2}$ m , find the distance between their tops.

Solution:

Given, Two poles of heights 6 m and 11 m stand on a plane ground.
And distance between the feet of the poles is 12 m .

Let $A B$ and $C D$ be the poles of height 6 m and 11 m .
Therefore, CP = 11-6 = 5m
From the figure, it can be observed that $\mathrm{AP}=12 \mathrm{~m}$
By Pythagoras theorem for $\triangle \mathrm{APC}$, we get,
$\mathrm{AP}^{2}=\mathrm{PC}^{2}+\mathrm{AC}^{2}$
$(12 \mathrm{~m})^{2}+(5 \mathrm{~m})^{2}=(\mathrm{AC})^{2}$
$\mathrm{AC}^{2}=(144+25) \mathrm{m}^{2}=169 \mathrm{~m}^{2}$
$\mathrm{AC}=13 \mathrm{~m}$
Therefore, the distance between their tops is 13 m .
13. D and E are points on the sides $C A$ and $C B$ respectively of a triangle $A B C$ right angled at C. Prove that $\mathrm{AE}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{DE}^{2}$.

Solution:
Given, D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C .

By Pythagoras theorem in $\triangle \mathrm{ACE}$, we get
$\mathrm{AC}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}$ \qquad
In $\triangle \mathrm{BCD}$, by Pythagoras theorem, we get
$\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}$
From equations (i) and (ii), we get,
$\mathrm{AC}^{2}+\mathrm{CE}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$ \qquad
In $\triangle \mathrm{CDE}$, by Pythagoras theorem, we get
$\mathrm{DE}^{2}=\mathrm{CD}^{2}+\mathrm{CE}^{2}$
In $\triangle \mathrm{ABC}$, by Pythagoras theorem, we get
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{CB}^{2}$
Putting the above two values in equation (iii), we get
$\mathrm{DE}^{2}+\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BD}^{2}$.
14. The perpendicular from A on side $B C$ of $a \triangle A B C$ intersects $B C$ at D such that $D B=3 C D$ (see Figure). Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.

Solution:

Given, the perpendicular from A on side BC of a $\triangle \mathrm{ABC}$ intersects BC at D such that;
$\mathrm{DB}=3 \mathrm{CD}$.
In $\triangle \mathrm{ABC}$,
$\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{BD}=3 \mathrm{CD}$
In right angle triangle, ADB and ADC , by Pythagoras theorem,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$ \qquad
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
Subtracting equation (ii) from equation (i), we get
$\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{DC}^{2}$
$=9 \mathrm{CD}^{2}-\mathrm{CD}^{2}[$ Since, $\mathrm{BD}=3 \mathrm{CD}]$
$=8 \mathrm{CD}^{2}$
$=8(B C / 4)^{2}[$ Since, $\mathrm{BC}=\mathrm{DB}+\mathrm{CD}=3 \mathrm{CD}+\mathrm{CD}=4 \mathrm{CD}]$
Therefore, $\mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BC}^{2} / 2$
$\Rightarrow 2\left(\mathrm{AB}^{2}-\mathrm{AC}^{2}\right)=\mathrm{BC}^{2}$
$\Rightarrow 2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2}$
$\therefore 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.
15. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=1 / 3 B C$. Prove that $9 A^{2}=7 A B^{2}$.

Solution:

Given, ABC is an equilateral triangle.
And D is a point on side $B C$ such that $B D=1 / 3 B C$

Let the side of the equilateral triangle be a, and AE be the altitude of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{BE}=\mathrm{EC}=\mathrm{BC} / 2=\mathrm{a} / 2$
And, $A E=a \sqrt{ } 3 / 2$
Given, $B D=1 / 3 B C$
$\therefore \mathrm{BD}=\mathrm{a} / 3$
$D E=B E-B D=a / 2-a / 3=a / 6$
In $\triangle \mathrm{ADE}$, by Pythagoras theorem,

$$
\begin{aligned}
\mathrm{AD}^{2}= & \mathrm{AE}^{2}+\mathrm{DE}^{2} \\
\mathrm{AD}^{2} & =\left(\frac{a \sqrt{3}}{2}\right)^{2}+\left(\frac{a}{6}\right)^{2} \\
& =\left(\frac{3 a^{2}}{4}\right)+\left(\frac{a^{2}}{36}\right) \\
& =\frac{28 a^{2}}{36} \\
& =\frac{7}{9} \mathrm{AB}^{2}
\end{aligned}
$$

$\Rightarrow 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$
16. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Solution:

Given, an equilateral triangle say ABC ,

Let the sides of the equilateral triangle be of length a , and AE be the altitude of $\triangle \mathrm{ABC}$.
$\therefore \mathrm{BE}=\mathrm{EC}=\mathrm{BC} / 2=\mathrm{a} / 2$
In $\triangle \mathrm{ABE}$, by Pythagoras Theorem, we get
$\mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}$
$a^{2}=A E^{2}+\left(\frac{a}{2}\right)^{2}$
$A E^{2}=a^{2}-\frac{a^{2}}{4}$
$A E^{2}=\frac{3 a^{2}}{4}$
$4 \mathrm{AE}^{2}=3 \mathrm{a}^{2}$
$\Rightarrow 4 \times($ Square of altitude $)=3 \times($ Square of one side $)$
Hence, proved.
17. Tick the correct answer and justify: In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. The angle B is:
(A) 120°
(B) 60°
(C) 90°
(D) 45°

Solution:

Given, in $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$.

We can observe that,
$\mathrm{AB}^{2}=108$
$\mathrm{AC}^{2}=144$
And, $\mathrm{BC}^{2}=36$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
The given triangle, $\triangle \mathrm{ABC}$, is satisfying Pythagoras theorem.
Therefore, the triangle is a right triangle, right-angled at B .
$\therefore \angle \mathrm{B}=90^{\circ}$
Hence, the correct answer is (C).

EXERCISE 6.6

1. In Figure, PS is the bisector of $\angle \mathrm{QPR}$ of $\triangle \mathrm{PQR}$. Prove that $\mathrm{QS} / \mathrm{PQ}=\mathrm{SR} / \mathrm{PR}$

Solution:

Let us draw a line segment RT parallel to SP which intersects extended line segment QP at point T.
Given, PS is the angle bisector of $\angle \mathrm{QPR}$. Therefore,
$\angle \mathrm{QPS}=\angle \mathrm{SPR}$. \qquad

As per the constructed figure,
$\angle \mathrm{SPR}=\angle \mathrm{PRT}($ Since, $\mathrm{PS}| | \mathrm{TR}$)
$\angle \mathrm{QPS}=\angle \mathrm{QRT}($ Since, $\mathrm{PS} \| \mathrm{TR})$
From the above equations, we get,
$\angle \mathrm{PRT}=\angle \mathrm{QTR}$
Therefore,
$\mathrm{PT}=\mathrm{PR}$
In \triangle QTR, by basic proportionality theorem,
$\mathrm{QS} / \mathrm{SR}=\mathrm{QP} / \mathrm{PT}$
Since, PT=TR
Therefore,
QS/SR = PQ/PR
Hence, proved.
2. In Fig. 6.57, D is a point on hypotenuse $A C$ of $\triangle A B C$, such that $B D \perp A C, D M \perp B C$ and $D N \perp A B$. Prove that: (i) $\mathrm{DM}^{2}=\mathrm{DN} . \mathrm{MC}$ (ii) $\mathrm{DN}^{2}=\mathrm{DM}$. AN.

Solution:

1. Let us join Point D and B.

Given,
$\mathrm{BD} \perp \mathrm{AC}, \mathrm{DM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{AB}$
Now from the figure we have,
$\mathrm{DN}\|\mathrm{CB}, \mathrm{DM}\| \mathrm{AB}$ and $\angle \mathrm{B}=90^{\circ}$
Therefore, DMBN is a rectangle.
So, $\mathrm{DN}=\mathrm{MB}$ and $\mathrm{DM}=\mathrm{NB}$
The given condition which we have to prove, is when D is the foot of the perpendicular drawn from B to AC .
$\therefore \angle \mathrm{CDB}=90^{\circ} \Rightarrow \angle 2+\angle 3=90^{\circ}$
In $\triangle \mathrm{CDM}, \angle 1+\angle 2+\angle \mathrm{DMC}=180^{\circ}$
$\Rightarrow \angle 1+\angle 2=90^{\circ}$
In $\triangle \mathrm{DMB}, \angle 3+\angle \mathrm{DMB}+\angle 4=180^{\circ}$
$\Rightarrow \angle 3+\angle 4=90^{\circ}$
From equation (i) and (ii), we get
$\angle 1=\angle 3$
From equation (i) and (iii), we get
$\angle 2=\angle 4$
In $\triangle \mathrm{DCM}$ and $\triangle \mathrm{BDM}$,
$\angle 1=\angle 3$ (Already Proved)
$\angle 2=\angle 4$ (Already Proved)
$\therefore \Delta \mathrm{DCM} \sim \Delta \mathrm{BDM}$ (AA similarity criterion)
$\mathrm{BM} / \mathrm{DM}=\mathrm{DM} / \mathrm{MC}$
$\mathrm{DN} / \mathrm{DM}=\mathrm{DM} / \mathrm{MC}(\mathrm{BM}=\mathrm{DN})$
$\Rightarrow \mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}$
Hence, proved.
(ii) In right triangle DBN,

$$
\begin{equation*}
\angle 5+\angle 7=90^{\circ} \tag{iv}
\end{equation*}
$$

In right triangle DAN,
$\angle 6+\angle 8=90^{\circ}$
D is the point in triangle, which is foot of the perpendicular drawn from B to AC.
$\therefore \angle \mathrm{ADB}=90^{\circ} \Rightarrow \angle 5+\angle 6=90^{\circ}$ \qquad
From equation (iv) and (vi), we get,
$\angle 6=\angle 7$
From equation (v) and (vi), we get,
$\angle 8=\angle 5$
In $\triangle \mathrm{DNA}$ and $\triangle \mathrm{BND}$,
$\angle 6=\angle 7$ (Already proved)
$\angle 8=\angle 5$ (Already proved)
$\therefore \triangle \mathrm{DNA} \sim \triangle \mathrm{BND}$ (AA similarity criterion)
AN/DN = DN/NB
$\Rightarrow \mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{NB}$
$\Rightarrow \mathrm{DN}^{2}=\mathrm{AN} \times \mathrm{DM}($ Since, $\mathrm{NB}=\mathrm{DM})$
Hence, proved.
3. In Figure, ABC is a triangle in which $\angle \mathrm{ABC}>90^{\circ}$ and $\mathrm{AD} \perp \mathrm{CB}$ produced. Prove that $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} . \mathrm{BD}$.

Solution:

By applying Pythagoras Theorem in $\triangle \mathrm{ADB}$, we get,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$ \qquad
Again, by applying Pythagoras Theorem in $\triangle \mathrm{ACD}$, we get,
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+(\mathrm{DB}+\mathrm{BC})^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}+\mathrm{BC}^{2}+2 \mathrm{DB} \times \mathrm{BC}$
From equation (i), we can write,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{DB} \times \mathrm{BC}$
Hence, proved.
4. In Figure, ABC is a triangle in which $\angle \mathrm{ABC}<\mathbf{9 0 ^ { \circ }}$ and $\mathrm{AD} \perp \mathrm{BC}$. Prove that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2$ BC.BD.

Solution:

By applying Pythagoras Theorem in $\triangle \mathrm{ADB}$, we get,
$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2}$
We can write it as;
$\Rightarrow \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{DB}^{2}$
By applying Pythagoras Theorem in $\triangle \mathrm{ADC}$, we get,
$\mathrm{AD}^{2}+\mathrm{DC}^{2}=\mathrm{AC}^{2}$

From equation (i),
$\mathrm{AB}^{2}-\mathrm{BD}^{2}+\mathrm{DC}^{2}=\mathrm{AC}^{2}$
$\mathrm{AB}^{2}-\mathrm{BD}^{2}+(\mathrm{BC}-\mathrm{BD})^{2}=\mathrm{AC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2}+\mathrm{BC}^{2}+\mathrm{BD}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
Hence, proved.
5. In Figure, $A D$ is a median of a triangle $A B C$ and $A M \perp B C$. Prove that :
(i) $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC} \cdot \mathrm{DM}+2(\mathrm{BC} / 2)^{2}$
(ii) $\mathrm{AB}^{2}=\mathrm{AD}^{2}-\mathrm{BC} \cdot \mathrm{DM}+2(\mathrm{BC} / 2)^{2}$
(iii) $\mathbf{A C}^{2}+\mathrm{AB}^{2}=2 \mathrm{AD}^{2}+1 / 2 \mathbf{B C}^{2}$

Solution:

(i) By applying Pythagoras Theorem in $\triangle \mathrm{AMD}$, we get,
$\mathrm{AM}^{2}+\mathrm{MD}^{2}=\mathrm{AD}^{2}$ \qquad (i)

Again, by applying Pythagoras Theorem in $\triangle \mathrm{AMC}$, we get,
$\mathrm{AM}^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
$\mathrm{AM}^{2}+(\mathrm{MD}+\mathrm{DC})^{2}=\mathrm{AC}^{2}$
$\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC}^{2}$
From equation(i), we get,
$\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AC}^{2}$
Since, $\mathrm{DC}=\mathrm{BC} / 2$, thus, we get,
$\mathrm{AD}^{2}+(\mathrm{BC} / 2)^{2}+2 \mathrm{MD} \cdot(\mathrm{BC} / 2)^{2}=\mathrm{AC}^{2}$
$\mathrm{AD}^{2}+(\mathrm{BC} / 2)^{2}+2 \mathrm{MD} \times \mathrm{BC}=\mathrm{AC}^{2}$
Hence, proved.
(ii) By applying Pythagoras Theorem in $\triangle \mathrm{ABM}$, we get;
$\mathrm{AB}^{2}=\mathrm{AM}^{2}+\mathrm{MB}^{2}$
$=\left(\mathrm{AD}^{2}-\mathrm{DM}^{2}\right)+\mathrm{MB}^{2}$
$=\left(\mathrm{AD}^{2}-\mathrm{DM}^{2}\right)+(\mathrm{BD}-\mathrm{MD})^{2}$
$=\mathrm{AD}^{2}-\mathrm{DM}^{2}+\mathrm{BD}^{2}+\mathrm{MD}^{2}-2 \mathrm{BD} \times \mathrm{MD}$
$=\mathrm{AD}^{2}+\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{MD}$
$=\mathrm{AD}^{2}+(\mathrm{BC} / 2)^{2}-2(\mathrm{BC} / 2) \mathrm{MD}$
$=\mathrm{AD}^{2}+(\mathrm{BC} / 2)^{2}-\mathrm{BC} \mathrm{MD}$
Hence, proved.
(iii) By applying Pythagoras Theorem in $\triangle \mathrm{ABM}$, we get,
$\mathrm{AM}^{2}+\mathrm{MB}^{2}=\mathrm{AB}^{2}$
By applying Pythagoras Theorem in $\triangle \mathrm{AMC}$, we get,
$\mathrm{AM}^{2}+\mathrm{MC}^{2}=\mathrm{AC}^{2}$
Adding both the equations (i) and (ii), we get,
$2 \mathrm{AM}^{2}+\mathrm{MB}^{2}+\mathrm{MC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AM}^{2}+(\mathrm{BD}-\mathrm{DM})^{2}+(\mathrm{MD}+\mathrm{DC})^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AM}^{2}+\mathrm{BD}^{2}+\mathrm{DM}^{2}-2 \mathrm{BD} \cdot \mathrm{DM}+\mathrm{MD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD} \cdot \mathrm{DC}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AM}^{2}+2 \mathrm{MD}^{2}+\mathrm{BD}^{2}+\mathrm{DC}^{2}+2 \mathrm{MD}(-\mathrm{BD}+\mathrm{DC})=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2\left(\mathrm{AM}^{2}+\mathrm{MD}^{2}\right)+(\mathrm{BC} / 2)^{2}+(\mathrm{BC} / 2)^{2}+2 \mathrm{MD}(-\mathrm{BC} / 2+\mathrm{BC} / 2)^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$2 \mathrm{AD}^{2}+\mathrm{BC}^{2} / 2=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
6. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Solution:

Let us consider, ABCD be a parallelogram. Now, draw perpendicular DE on extended side of AB, and draw a perpendicular AF meeting DC at point F .

By applying Pythagoras Theorem in $\triangle \mathrm{DEA}$, we get,
$\mathrm{DE}^{2}+\mathrm{EA}^{2}=\mathrm{DA}^{2}$ \qquad
By applying Pythagoras Theorem in $\triangle \mathrm{DEB}$, we get,
$\mathrm{DE}^{2}+\mathrm{EB}^{2}=\mathrm{DB}^{2}$
$\mathrm{DE}^{2}+(\mathrm{EA}+\mathrm{AB})^{2}=\mathrm{DB}^{2}$
$\left(\mathrm{DE}^{2}+\mathrm{EA}^{2}\right)+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}=\mathrm{DB}^{2}$
$\mathrm{DA}^{2}+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}=\mathrm{DB}^{2}$ \qquad
By applying Pythagoras Theorem in $\triangle \mathrm{ADF}$, we get,
$\mathrm{AD}^{2}=\mathrm{AF}^{2}+\mathrm{FD}^{2}$
Again, applying Pythagoras theorem in $\triangle \mathrm{AFC}$, we get,
$\mathrm{AC}^{2}=\mathrm{AF}^{2}+\mathrm{FC}^{2}=\mathrm{AF}^{2}+(\mathrm{DC}-\mathrm{FD})^{2}$
$=\mathrm{AF}^{2}+\mathrm{DC}^{2}+\mathrm{FD}^{2}-2 \mathrm{DC} \times \mathrm{FD}$
$=\left(\mathrm{AF}^{2}+\mathrm{FD}^{2}\right)+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD} \mathrm{AC}^{2}$
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD}$
Since ABCD is a parallelogram,
$\mathrm{AB}=\mathrm{CD}$
And BC = AD

In $\triangle \mathrm{DEA}$ and $\triangle \mathrm{ADF}$,
$\angle \mathrm{DEA}=\angle \mathrm{AFD}\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{EAD}=\angle \mathrm{ADF}(\mathrm{EA} \| \mathrm{DF})$
$\mathrm{AD}=\mathrm{AD}$ (Common Angles)
$\therefore \triangle \mathrm{EAD} \cong \triangle \mathrm{FDA}(\mathrm{AAS}$ congruence criterion)
$\Rightarrow \mathrm{EA}=\mathrm{DF}$
Adding equations (i) and (iii), we get,
$\mathrm{DA}^{2}+\mathrm{AB}^{2}+2 \mathrm{EA} \times \mathrm{AB}+\mathrm{AD}^{2}+\mathrm{DC}^{2}-2 \mathrm{DC} \times \mathrm{FD}=\mathrm{DB}^{2}+\mathrm{AC}^{2}$
$\mathrm{DA}^{2}+\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{EA} \times \mathrm{AB}-2 \mathrm{DC} \times \mathrm{FD}=\mathrm{DB}^{2}+\mathrm{AC}^{2}$
From equation (iv) and (vi),
$\mathrm{BC}^{2}+\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{DC}^{2}+2 \mathrm{EA} \times \mathrm{AB}-2 \mathrm{AB} \times \mathrm{EA}=\mathrm{DB}^{2}+\mathrm{AC}^{2}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
7. In Figure, two chords $A B$ and $C D$ intersect each other at the point P. Prove that :
(i) $\triangle \mathrm{APC} \sim \Delta \mathrm{DPB}$
(ii) $\mathrm{AP} \cdot \mathrm{PB}=\mathrm{CP} \cdot \mathrm{DP}$

Solution:

Firstly, let us join $C B$, in the given figure.
(i) In $\triangle \mathrm{APC}$ and $\triangle \mathrm{DPB}$,
$\angle \mathrm{APC}=\angle \mathrm{DPB}$ (Vertically opposite angles)
$\angle \mathrm{CAP}=\angle \mathrm{BDP}$ (Angles in the same segment for chord CB)
Therefore,
$\Delta \mathrm{APC} \sim \triangle \mathrm{DPB}$ (AA similarity criterion)
(ii) In the above, we have proved that $\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$

We know that the corresponding sides of similar triangles are proportional.
$\therefore \mathrm{AP} / \mathrm{DP}=\mathrm{PC} / \mathrm{PB}=\mathrm{CA} / \mathrm{BD}$
$\Rightarrow \mathrm{AP} / \mathrm{DP}=\mathrm{PC} / \mathrm{PB}$
$\therefore \mathrm{AP} . \mathrm{PB}=\mathrm{PC} . \mathrm{DP}$
Hence, proved.
8. In Fig. 6.62, two chords AB and CD of a circle intersect each other at the point \mathbf{P} (when produced) outside the circle. Prove that:
(i) $\triangle \mathbf{P A C} \sim \Delta$ PDB
(ii) $\mathbf{P A} . \mathrm{PB}=\mathbf{P C}$. PD.

Solution:

(i) In $\triangle \mathrm{PAC}$ and $\triangle \mathrm{PDB}$,
$\angle \mathrm{P}=\angle \mathrm{P}$ (Common Angles)
As we know, exterior angle of a cyclic quadrilateral is $\angle \mathrm{PCA}$ and $\angle \mathrm{PBD}$ is opposite interior angle, which are both equal.
$\angle \mathrm{PAC}=\angle \mathrm{PDB}$
Thus, $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$ (AA similarity criterion)
(ii) We have already proved above,
$\triangle \mathrm{APC} \sim \triangle \mathrm{DPB}$
We know that the corresponding sides of similar triangles are proportional.
Therefore,
$\mathrm{AP} / \mathrm{DP}=\mathrm{PC} / \mathrm{PB}=\mathrm{CA} / \mathrm{BD}$
$\mathrm{AP} / \mathrm{DP}=\mathrm{PC} / \mathrm{PB}$
$\therefore \mathrm{AP} . \mathrm{PB}=\mathrm{PC}$. DP
9. In Figure, D is a point on side $B C$ of $\Delta A B C$ such that $B D / C D=A B / A C$. Prove that $A D$ is the bisector of \angle BAC.

Solution:

In the given figure, let us extend BA to P such that;
$\mathrm{AP}=\mathrm{AC}$.
Now join PC.

Given, $\mathrm{BD} / \mathrm{CD}=\mathrm{AB} / \mathrm{AC}$
$\Rightarrow \mathrm{BD} / \mathrm{CD}=\mathrm{AP} / \mathrm{AC}$
By using the converse of basic proportionality theorem, we get,
AD \| PC
$\angle \mathrm{BAD}=\angle \mathrm{APC}$ (Corresponding angles)
And, $\angle \mathrm{DAC}=\angle \mathrm{ACP}$ (Alternate interior angles)
By the new figure, we have;
$\mathrm{AP}=\mathrm{AC}$
$\Rightarrow \angle \mathrm{APC}=\angle \mathrm{ACP}$
On comparing equations (i), (ii), and (iii), we get,
$\angle \mathrm{BAD}=\angle \mathrm{APC}$
Therefore, AD is the bisector of the angle BAC.
Hence, proved.
10. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out (see Figure)? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?

Solution:

Let us consider, AB is the height of the tip of the fishing rod from the water surface and BC is the horizontal distance of the fly from the tip of the fishing rod. Therefore, AC is now the length of the string.

To find $A C$, we have to use Pythagoras theorem in $\triangle A B C$, is such way;
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\mathrm{AB}^{2}=(1.8 \mathrm{~m})^{2}+(2.4 \mathrm{~m})^{2}$
$\mathrm{AB}^{2}=(3.24+5.76) \mathrm{m}^{2}$
$\mathrm{AB}^{2}=9.00 \mathrm{~m}^{2}$
$\Rightarrow A B=\sqrt{ } 9 \mathrm{~m}=3 \mathrm{~m}$
Thus, the length of the string out is 3 m .
As its given, she pulls the string at the rate of 5 cm per second.
Therefore, string pulled in 12 seconds $=12 \times 5=60 \mathrm{~cm}=0.6 \mathrm{~m}$

Let us say now, the fly is at point D after 12 seconds.
Length of string out after 12 seconds is AD.
$\mathrm{AD}=\mathrm{AC}-$ String pulled by Nazima in 12 seconds
$=(3.00-0.6) \mathrm{m}$
$=2.4 \mathrm{~m}$
In $\triangle \mathrm{ADB}$, by Pythagoras Theorem,
$\mathrm{AB}^{2}+\mathrm{BD}^{2}=\mathrm{AD}^{2}$
$(1.8 \mathrm{~m})^{2}+\mathrm{BD}^{2}=(2.4 \mathrm{~m})^{2}$
$\mathrm{BD}^{2}=(5.76-3.24) \mathrm{m}^{2}=2.52 \mathrm{~m}^{2}$
$\mathrm{BD}=1.587 \mathrm{~m}$
Horizontal distance of fly $=\mathrm{BD}+1.2 \mathrm{~m}$
$=(1.587+1.2) \mathrm{m}=2.787 \mathrm{~m}$
$=2.79 \mathrm{~m}$

